【題目】已知,如圖,平行四邊形ABCD中,AB⊥ACAB=1,BC=,對角線ACBD交于O點,將直線AC繞點O順時針旋轉,分別交BC,AD于點EF

1)求證:當旋轉角為90°時,四邊形ABEF是平行四邊形;

2)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).

【答案】1)見解析 (2)見解析

【解析】

1)根據(jù)∠BAC=∠AOF90°推出ABEF,根據(jù)平行四邊形性質得出AFBE,即可推出四邊形ABEF是平行四邊形;

2)證△DFO≌△BEO,推出OFOE,得出四邊形BEDF是平行四邊形,根據(jù)勾股定理求出AC,求出OAAB1,求出∠AOB45°,根據(jù)∠AOF45°,推出EFBD,根據(jù)菱形的判定推出即可.

1)證明:∵∠AOF90°,∠BAO90°,

ABEF,

又∵平行四邊形ABCD,

AFEB,

∴四邊形ABEF是平行四邊形;

2)當旋轉角∠AOF45°時,四邊形BEDF是菱形,理由如下:

∵平行四邊形ABCD,

ADBC,BODO

∴∠FDO=∠EBO,∠DFO=∠BEO,

在△DFO和△BEO

,

∴△DFO≌△BEOAAS),

OFOE,

∴四邊形BEDF是平行四邊形,

AB1,BC,

∴在RtBAC中,由勾股定理得:AC2,

AO1AB

∴∠AOB45°,

又∵∠AOF45°,

∴∠BOF90°,

BDEF,

∴四邊形BEDF是菱形,

即在旋轉過程中,四邊形BEDF能是菱形,此時AC繞點O順時針旋轉的度數(shù)是45°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣60)、C(﹣1,0).

1)畫出△ABC關于原點成中心對稱的三角形△ABC′;

2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點B″的坐標;

3)請直接寫出:以A、BC為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是關于四個圖案的描述.

1所示是太極圖,俗稱陰陽魚,該圖案關于外圈大圓的圓心中心對稱;

2所示是一個正三角形內接于圓;

3所示是一個正方形內接于圓;

4所示是兩個同心圓,其中小圓的半徑是外圈大圓半徑的三分之二.

這四個圖案中,陰影部分的面積不小于該圖案外圈大圓面積一半的是(

A.1和圖3B.2和圖3C.2和圖4D.1和圖4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G

1觀察圖形,寫出圖中所有與AED相等的角

2選擇圖中與AED相等的任意一個角,并加以證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小芳家的落地窗(線段DE)與公路(直線PQ)互相平行,她每天做完作業(yè)后都會在點A處向窗外的公路望去.

1)請在圖中畫出小芳能看到的那段公路并記為BC

2)小芳很想知道點A與公路之間的距離,于是她想到了一個辦法.她測出了鄰家小彬在公路BC段上走過的時間為10秒,又測量了點A到窗的距離是4米,且窗DE的長為3米,若小彬步行的平均速度為1.2/秒,請你幫助小芳計算出點A到公路的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ACB=90°ABC=25°,OAB的中點. OA繞點O逆時針旋轉θ °OP0<θ<180,當BCP恰為軸對稱圖形時,θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于A,C兩點,與y軸交于B點,拋物線的頂點為點D,已知點A的坐標為(10),點B的坐標為(0,﹣3).

(1)求拋物線的解析式及頂點D的坐標.

(2)求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農場要建一個飼養(yǎng)場(長方形,飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長60米,設飼養(yǎng)場(長方形的寬為米.

1)求飼養(yǎng)場的長(用含的代數(shù)式表示).

2)若飼養(yǎng)場的面積為,求的值.

3)當為何值時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達到的最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中(BC>AB),過AAFBC,垂足為F,過CCHAB,垂足為H,交AFG,點EFC上一點,且GEED

1)若FC=2BF=4,AB=,求平行四邊形ABCD的面積.

2 AF=FC,FBE中點,求證:

查看答案和解析>>

同步練習冊答案