【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點A作AD∥x軸交拋物線于點D.
(1)求此拋物線的表達(dá)式;
(2)點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,求△EAD的面積;
(3)若點P是直線AB下方的拋物線上一動點,當(dāng)點P運(yùn)動到某一位置時,△ABP的面積最大,求出此時點P的坐標(biāo)和△ABP的最大面積.
【答案】(1)y=x2+4x﹣5;(2)20;(3)
【解析】
(1)根據(jù)題意可以求得a、b的值,從而可以求得拋物線的表達(dá)式;(2)根據(jù)題意可以求得AD的長和點E到AD的距離,從而可以求得△EAD的面積;(3)根據(jù)題意可以求得直線AB的函數(shù)解析式,再根據(jù)題意可以求得△ABP的面積,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.
(1)∵拋物線y=ax2+bx﹣5交y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),
∴,得,
∴此拋物線的表達(dá)式是y=x2+4x﹣5;
(2)∵拋物線y=x2+4x﹣5交y軸于點A,
∴點A的坐標(biāo)為(0,﹣5),
∵AD∥x軸,點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,
∴點E的縱坐標(biāo)是5,點E到AD的距離是10,
當(dāng)y=﹣5時,﹣5=x2+4x﹣5,得x=0或x=﹣4,
∴點D的坐標(biāo)為(﹣4,﹣5),
∴AD=4,
∴△EAD的面積是:=20;
(3)設(shè)點P的坐標(biāo)為(p,p2+4p﹣5),如右圖所示,
設(shè)過點A(0,﹣5),點B(﹣5,0)的直線AB的函數(shù)解析式為y=mx+n,
,得,
即直線AB的函數(shù)解析式為y=﹣x﹣5,
當(dāng)x=p時,y=﹣p﹣5,
∵OB=5,
∴△ABP的面積是:S=,
∵點P是直線AB下方的拋物線上一動點,
∴﹣5<p<0,
∴當(dāng)p=﹣時,S取得最大值,此時S= ,點p的坐標(biāo)是(-,﹣),
即點p的坐標(biāo)是(-,﹣)時,△ABP的面積最大,此時△ABP的面積是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市為了節(jié)約用水,準(zhǔn)備實行自來水“階梯計費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費(fèi)為更好地決策,自來水公司在某街道隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),按A,B,C,D,E五個區(qū)間進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅不完整的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A:0﹣3噸;B:3﹣6噸;C:6﹣9噸;D:9﹣12噸;E:12﹣16噸,且每組數(shù)據(jù)區(qū)間包括右端的數(shù)但不包括左端的數(shù))
(1)這次隨機(jī)抽樣調(diào)查了_____用戶
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形統(tǒng)計圖中B部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶9噸,那么該街道1.8萬用戶中約有多少用戶的用水全部享受基本用水量的價格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣3過點A(1,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點P是線段AD上的動點.
(1)b= ,拋物線的頂點坐標(biāo)為 ;
(2)求直線AD的解析式;
(3)過點P的直線垂直于x軸,交拋物線于點Q,連接AQ,DQ,當(dāng)△ADQ的面積等于△ABD的面積的一半時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點B,C,正方形AOCD的頂點D在第二象限內(nèi),E是BC中點,OF⊥DE于點F,連結(jié)OE,動點P在AO上從點A向終點O勻速運(yùn)動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運(yùn)動,它們同時到達(dá)終點.
(1)求點B的坐標(biāo)和OE的長;
(2)設(shè)點Q2為(m,n),當(dāng)tan∠EOF時,求點Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點P運(yùn)動到AO中點時,點Q恰好與點C重合.
①延長AD交直線BC于點Q3,當(dāng)點Q在線段Q2Q3上時,設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰Rt△ABC中,∠CAB=90°,P是△ABC內(nèi)一點,將△PAB繞A逆時針旋轉(zhuǎn)90°得△DAC.
(1)試判斷△PAD的形狀并說明理由;
(2)連接PC,若∠APB=135°,PA=1,PB=3,求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)生產(chǎn)的560件新產(chǎn)品需要精加工后才能投放市場.現(xiàn)由甲、乙兩個工廠來加工生產(chǎn),已知甲工廠每天加工生產(chǎn)的新產(chǎn)品件數(shù)是乙工廠每天加工生產(chǎn)新產(chǎn)品件數(shù)的1.5倍,并且加工生產(chǎn)240件新產(chǎn)品甲工廠比乙工廠少用4天.
(1)求甲、乙兩個工廠每天分別可加工生產(chǎn)多少件新產(chǎn)品?
(2)若甲工廠每天的加工生產(chǎn)成本為2.8萬元,乙工廠每天的加工生產(chǎn)成本為2.4萬元要使這批新產(chǎn)品的加工生產(chǎn)總成本不超過60萬元,至少應(yīng)安排甲工廠加工生產(chǎn)多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組用高為1.2米的測角儀測量小樹AB的高度,如圖,在距AB一定距離的F處測得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時,又測得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數(shù)據(jù):sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.
(1)該班共有 名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com