【題目】分解因式:4xx3_____

【答案】x(2+x)(2x)

【解析】

原式提取x,再利用平方差公式分解即可.

原式=x(4x2)x(2+x)(2x),

故答案為:x(2+x)(2x)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,D、E分別是AC、AB的中點(diǎn),且BD,CE相交于O點(diǎn),某一位同學(xué)分析這個(gè)圖形后得出以下結(jié)論: ①△BCD≌△CBE; ②△BDA≌△CEA; ③△BOE≌△COD; ④△BAD≌△BCD;⑤△ACE≌△BCE,上述結(jié)論一定正確的是( )

A. ①②③ B. ②③④ C. ①③⑤ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(2,3),B(5,0),C(, 2).

①當(dāng)時(shí),點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為

②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為

(2)已知點(diǎn)D(1,1),點(diǎn)E(, ),其中點(diǎn)E是函數(shù)的圖像上一點(diǎn),⊙P是點(diǎn)O,D,E的一個(gè)面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在矩形ABCD中,E、F分別是AB、AD邊上的點(diǎn),且BE=AF,∠1=∠2.

(1)Rt△AEF與Rt△BCE全等嗎?說明理由;

(2)△CEF是不是直角三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】半徑分別為3cm和4cm的兩圓內(nèi)切,這兩圓的圓心距為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平面直角坐標(biāo)系中,A(0,4),B(0,2),點(diǎn)Cx軸上一點(diǎn),點(diǎn)DOC的中點(diǎn).

(1)求證:BD∥AC;

(2)若點(diǎn)Cx軸正半軸上,且BDAC的距離等于1,求點(diǎn)C的坐標(biāo);

(3)如果OE⊥AC于點(diǎn)E,當(dāng)四邊形ABDE為平行四邊形時(shí),求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像如圖,頂點(diǎn)坐標(biāo)D為(3, )。它與軸交于AB兩點(diǎn)(點(diǎn)A在B的左側(cè)),與軸交于C點(diǎn),且AB的長為12. 動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿AB方向以1個(gè)單位長度/秒的速度向點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)求二次函數(shù)的解析式;

2)當(dāng)△PDB為等腰三角形時(shí),求t的值;

3)若動(dòng)點(diǎn)QP同時(shí)從A點(diǎn)出發(fā),點(diǎn)Q沿折線ACCDDB運(yùn)動(dòng),在ACCD,DB上運(yùn)動(dòng)的速度分別為3,2 (個(gè)單位長度/)﹒當(dāng)P,Q中的一點(diǎn)到達(dá)B點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連結(jié)PQ.

當(dāng)PQ的中點(diǎn)恰好落在y軸上時(shí),求t的值;

P,Q的運(yùn)動(dòng)過程中,若線段PQ的垂直平分線與線段BD有交點(diǎn)時(shí),請(qǐng)直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程:(m﹣1)x2+(m﹣2)x﹣1=0(m為實(shí)數(shù)).

(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;

(2)若是此方程的實(shí)數(shù)根,拋物線y=(m﹣1)x2+(m﹣2)x﹣1與x軸交于A、B,拋物線的頂點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案