在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=______度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.

【答案】分析:(1)問要求∠BCE的度數(shù),可將它轉(zhuǎn)化成與已知角有關(guān)的聯(lián)系,根據(jù)已知條件和全等三角形的判定定理,得出△ABD≌△ACE,再根據(jù)全等三角形中對(duì)應(yīng)角相等,最后根據(jù)直角三角形的性質(zhì)可得出結(jié)論;
(2)問在第(1)問的基礎(chǔ)上,將α+β轉(zhuǎn)化成三角形的內(nèi)角和;
(3)問是第(1)問和第(2)問的拓展和延伸,要注意分析兩種情況.
解答:解:(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD與△ACE中,

∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;

(2)①α+β=180°,
理由:∵∠BAC=∠DAE,
∴∠BAD+∠DAC=∠EAC+∠DAC.
即∠BAD=∠CAE.
在△ABD與△ACE中,

∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°;

②當(dāng)點(diǎn)D在射線BC上時(shí),α+β=180°;
理由:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵在△ABD和△ACE中

∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵∠BAC+∠ABD+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴α+β=180°;
當(dāng)點(diǎn)D在射線BC的反向延長線上時(shí),α=β.
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵在△ADB和△AEC中,

∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
點(diǎn)評(píng):本題考查三角形全等的判定,以及全等三角形的性質(zhì);兩者綜合運(yùn)用,促進(jìn)角與角相互轉(zhuǎn)換,將未知角轉(zhuǎn)化為已知角是關(guān)鍵.本題的亮點(diǎn)是由特例引出一般情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案