【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長.
【答案】
(1)
證明:
∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性質(zhì)可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四邊形EFDG為菱形
(2)
解:EG2= GFAF.
理由:如圖1所示:連接DE,交AF于點(diǎn)O.
∵四邊形EFDG為菱形,
∴GF⊥DE,OG=OF= GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴ ,即DF2=FOAF.
∵FO= GF,DF=EG,
∴EG2= GFAF
(3)
解:如圖2所示:過點(diǎn)G作GH⊥DC,垂足為H.
∵EG2= GFAF,AG=6,EG=2 ,
∴20= FG(FG+6),整理得:FG2+6FG﹣40=0.
解得:FG=4,F(xiàn)G=﹣10(舍去).
∵DF=GE=2 ,AF=10,
∴AD= =4 .
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴ ,即 = .
∴GH= .
∴BE=AD﹣GH=4 ﹣ =
【解析】(1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明∠DGF=∠DFG,從而得到GD=DF,接下來依據(jù)翻折的性質(zhì)可證明DG=GE=DF=EF;(2)連接DE,交AF于點(diǎn)O.由菱形的性質(zhì)可知GF⊥DE,OG=OF= GF,接下來,證明本題主要考查的是四邊形與三角形的綜合應(yīng)用,解答本題主要應(yīng)用了矩形的性質(zhì)、菱形的判定和性質(zhì)、相似三角形的性質(zhì)和判定、勾股定理的應(yīng)用,利用相似三角形的性質(zhì)得到DF2=FOAF是解題答問題(2)的關(guān)鍵,依據(jù)相似三角形的性質(zhì)求得GH的長是解答問題(3)的關(guān)鍵.△DOF∽△ADF,由相似三角形的性質(zhì)可證明DF2=FOAF,于是可得到GE、AF、FG的數(shù)量關(guān)系;(3)過點(diǎn)G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG=4,然后再△ADF中依據(jù)勾股定理可求得AD的長,然后再證明△FG∽△FAD,利用相似三角形的性質(zhì)可求得GH的長,最后依據(jù)BE=AD﹣GH求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一副三角尺的直角頂點(diǎn)重合在一起.
(1)若 OB 是∠DOC 的角平分線,求∠AOD 的補(bǔ)角的度數(shù)是多少?
(2)若 ∠COB 與 ∠DOA 的比是 2:7,求 ∠BOC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,AB與CG交于點(diǎn)下列結(jié)論:;;;;其中正確的有______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒過點(diǎn)D作于點(diǎn)F,連接DE、EF.
求證:;
四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
當(dāng)t為何值時(shí),為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將連續(xù)的奇數(shù) 1,3,5,7,9,…,排成如圖的數(shù)陣.
(1)十字框中的五個(gè)數(shù)的和與中間數(shù) 15 有什么關(guān)系?
(2)設(shè)中間數(shù)為 a,用式子表示十字框中五個(gè)數(shù)之和;
(3)十字框中五個(gè)數(shù)之和能等于 2 005 嗎?若能,請(qǐng)寫出這五個(gè)數(shù);若不能, 說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,則△ADE的面積為( )
A.1 B.2 C.5 D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作CD⊥OB于點(diǎn)D,若點(diǎn)C,D都在雙曲線y= 上(k>0,x>0),則k的值為( )
A.25
B.18
C.9
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】OC把∠AOB分成兩部分且有下列兩個(gè)等式成立:
①∠AOC=直角+∠BOC;②∠BOC=平角-∠AOC,問∶
(1)OA與OB的位置關(guān)系怎樣?
(2)OC是否為∠AOB的平分線?并寫出判斷的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com