【題目】計算

1

2

3

4

【答案】1;(2;(3;(4

【解析】

1)方程去括號,移項合并,將x系數(shù)化為1,即可求出解;
2)方程去分母,去括號,移項合并,將x系數(shù)化為1,即可求出解.

3)先把小數(shù)化成整數(shù),然后去分母,去括號,移項合并,將x系數(shù)化為1,即可求出解.

4)方程去分母,去括號,移項合并,將x系數(shù)化為1,即可求出解.

1

去括號得:,

移項合并得:

系數(shù)化為1得:;

2

兩邊同時乘以6去分母得:

去括號得:

移項合并得:,

系數(shù)化為1得:

3

整理得:,

兩邊同時乘以14去分母得:

去括號得:,

移項合并得:,

系數(shù)化為1得:;

4

兩邊同時乘以6去分母得:,

去括號得:

移項合并得:,

系數(shù)化為1得:;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知兩點在數(shù)軸上,點表示的數(shù)為-10,點到點的距離是點到點距離的3倍,點以每秒3個單位長度的速度從點向右運動.以每秒2個單位長度的速度從點向右運動(點、同時出發(fā))

1)數(shù)軸上點對應的數(shù)是______.

2)經(jīng)過幾秒,點、點分別到原點的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示的有理數(shù)為,點B表示的有理數(shù)為6,點P從點A出發(fā)以每秒2個單位長度的速度由運動,同時,點Q從點B出發(fā)以每秒1個單位長度的速度由運動,當點Q到達點AP、Q兩點停止運動,設運動時間為單位:秒

1)求時,求點P和點Q表示的有理數(shù);

2)求點P與點Q第一次重合時的t值;

3)當t的值為多少時,點P表示的有理數(shù)與點Q表示的有理數(shù)距離是3個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖O為坐標原點,四邊形ABCD是菱形,A(44),B點在第二象限,AB5ABy軸交于點F,對角線ACy軸于點E

(1)直接寫出B、C點的坐標;

(2)動點PC點出發(fā)以每秒1個單位的速度沿折線段CDA運動,設運動時間為t秒,請用含t的代數(shù)式表示EDP的面積;

(3)(2)的條件下,是否存在一點P,使APE沿其一邊翻折構成的四邊形是菱形?若存在,請直接寫出當t為多少秒時存在符合條件的點P;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由“趙爽弦圖”變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2S3.若S1+S2+S3=15,則S2的值是(

A. 5B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2-6ax+6(a≠0)x軸交于點A(8,0),與y軸交于點B,在X軸上有一動點E(m,0)(0m8),過點Ex軸的垂線交直線AB于點N,交拋物線于點P,過點PPMAB于點M

)分別求出直線AB和拋物線的函數(shù)表達式;

)設PMN的面積為S1,AEN的面積為S2,若S1S2=3625,求m的值;

)如圖2,在()條件下,將線段OE繞點O逆時針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α(0°α90°),連接EAEB

①在x軸上找一點Q,使OQE∽△OEA,并求出Q點的坐標;

②求BE+AE'的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】進入夏季用電高峰季節(jié),市供電局維修隊接到緊急通知:要到 30 千米遠的某鄉(xiāng)鎮(zhèn)進行緊急搶修,維修工騎摩托車先走,15 分鐘后,搶修車裝載所需材料出發(fā), 結果兩車同時到達搶修點,已知搶修車的速度是摩托車速度的 1.5 倍,求兩種車的速 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖①,在正方形ABCD中,點E在對角線AC上(不與點A、C重合),連結ED,EB,過點EEFED,交邊BC于點F.易知∠EFC+∠EDC=180°,進而證出EB=EF
探究:如圖②,點E在射線CA上(不與點AC重合),連結EDEB,過點EEFED,交CB的延長線于點F.求證:EB=EF
應用:如圖②,若DE=2,CD=1,則四邊形EFCD的面積為

查看答案和解析>>

同步練習冊答案