(2006•韶關(guān))如圖,已知△ABC的周長為1,連接△ABC三邊的中點(diǎn)構(gòu)成第二個三角形,再連接第二個三角形三邊的中點(diǎn)構(gòu)成第三個三角形,…,依此類推,則第10個三角形的周長為( )

A.
B.
C.
D.
【答案】分析:根據(jù)三角形的中位線定理建立周長之間的關(guān)系,按規(guī)律求解.
解答:解:根據(jù)三角形中位線定理可得第二個三角形的各邊長都等于最大三角形各邊的一半,那么第二個三角形的周長=△ABC的周長×=1×=,第三個三角形的周長為=△ABC的周長××=(2,第10個三角形的周長=(9,故選C.
點(diǎn)評:解決本題的關(guān)鍵是利用三角形的中位線定理得到第n個三角形的周長與第一個三角形的周長的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•韶關(guān))如圖,在△ABC中,AB=AC,E是高AD上的動點(diǎn),F(xiàn)是點(diǎn)D關(guān)于點(diǎn)E的對稱點(diǎn)(點(diǎn)F在高AD上,且不與A,D重合).過點(diǎn)F作BC的平行線與AB交于G,與AC交于H,連接GE并延長交BC于點(diǎn)I,連接HE并延長交BC于點(diǎn)J,連接GJ,HI.
(1)求證:四邊形GHIJ是矩形;
(2)若BC=10,AD=6,設(shè)DE=x,S矩形GHIJ=y.
①求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②點(diǎn)E在何處時,矩形GHIJ的面積與△AGH的面積相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省濟(jì)南市省實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)測試試卷(4)(解析版) 題型:選擇題

(2006•韶關(guān))如圖,已知△ABC的周長為1,連接△ABC三邊的中點(diǎn)構(gòu)成第二個三角形,再連接第二個三角形三邊的中點(diǎn)構(gòu)成第三個三角形,…,依此類推,則第10個三角形的周長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省韶關(guān)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•韶關(guān))如圖,⊙A,⊙B,⊙C,⊙D相互外離,它們的半徑都是1,順次連接四個圓心得到四邊形ABCD,則圖中四個扇形(陰影部分)的面積之和等于    .(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省韶關(guān)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•韶關(guān))如圖,已知△ABC的周長為1,連接△ABC三邊的中點(diǎn)構(gòu)成第二個三角形,再連接第二個三角形三邊的中點(diǎn)構(gòu)成第三個三角形,…,依此類推,則第10個三角形的周長為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案