已知圖1和圖2中的每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位.

(1)將圖1中的格點(diǎn)△ABC,先向右平移3個(gè)單位,再向上平移2個(gè)單位,得到△A1B1C1,請(qǐng)你在圖1中畫(huà)出△A1B1C1.

(2)在圖2中畫(huà)出一個(gè)與格點(diǎn)△DEF相似但相似比不等于1的格點(diǎn)三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了參加市教委舉行的“爭(zhēng)創(chuàng)綠色學(xué)校,美化校園環(huán)境”的活動(dòng),某區(qū)教委決定委托園林公司對(duì)所轄甲、乙兩所學(xué)校進(jìn)行校園綠化工作.已知甲校有如圖1所示的矩形內(nèi)陰影部分空地需鋪設(shè)草坪,乙校有如圖2所示的平行四邊形內(nèi)陰影部分空地需鋪設(shè)草坪(圖1,圖2中數(shù)據(jù)單位均為“米”).在A、B兩地分別有同種草皮4500米2和2500米2出售,且售價(jià)一樣.若園林公司向A、B兩地購(gòu)買(mǎi)草皮,其路程和運(yùn)費(fèi)單價(jià)表如下:
   甲校 乙校 
 路程(千米) 運(yùn)費(fèi)單價(jià)(元)  路程(千米)  運(yùn)費(fèi)單價(jià)(元)  
 A地           20           0.3           10             0.3
 B地           15           0.2           20             0.2
(注:運(yùn)費(fèi)單價(jià)表示每平方米草皮運(yùn)送1千米所需要的人民幣)
(1)分別求出圖1、圖2的陰影部分面積;
(2)若甲校從A地購(gòu)買(mǎi)x米2的草皮(x取整數(shù)),因路程關(guān)系,甲校從A地購(gòu)買(mǎi)的草皮數(shù)不超過(guò)甲校從B地購(gòu)買(mǎi)的草皮數(shù),乙校從B地購(gòu)買(mǎi)的草皮數(shù)大于甲校從B地購(gòu)買(mǎi)的草皮數(shù)的
1
5
,那么甲校乙校從A,B兩地購(gòu)買(mǎi)草皮的方案有多少種?
(3)在(2)的條件下,請(qǐng)你設(shè)計(jì)出總運(yùn)費(fèi)最低的草皮運(yùn)送方案,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為     

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OAC按O→A→C的路線(xiàn)運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OCA按O→C→A的路線(xiàn)運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,

請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為     ;

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OAC按O→A→C的路線(xiàn)運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OCA按O→C→A的路線(xiàn)運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,

請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省衢州市江山二中九年級(jí)(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖甲所示,已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);
(1)求拋物線(xiàn)函數(shù)關(guān)系式;
(2)矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線(xiàn)AB與該拋物線(xiàn)的交點(diǎn)為N(如圖乙所示).
①當(dāng)時(shí),判斷點(diǎn)P是否在直線(xiàn)ME上,并說(shuō)明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問(wèn)S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
③現(xiàn)將甲圖中的拋物線(xiàn)向右平移m(m>0)個(gè)單位,所得拋物線(xiàn)與x軸交于G、F兩點(diǎn),與原拋物線(xiàn)交于點(diǎn)Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(內(nèi)蒙古呼和浩特卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為    ;

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OAC按O→A→C的路線(xiàn)運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OCA按O→C→A的路線(xiàn)運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.

①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;

③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案