【題目】如圖,AB為⊙O的直徑,AC與⊙O交于點(diǎn)F,弦AD平分∠BAC,DEAC,垂足為E點(diǎn).

1)求證:DE是⊙O的切線;

2)若⊙O的半徑為2,∠BAC60°,求圖中陰影部分的面積.

【答案】1)見解析;(2S陰影π.

【解析】

1)連接OD,先證明∠OAD=∠CAD,∠ODA=∠CAD,從而證明∠ODE90°,即可證明DE是⊙O的切線;

2)連接OF,根據(jù)∠BAC60°和角度轉(zhuǎn)換證明OD∥OC,即可證明SAFDSAFO,把圖中陰影部分面積轉(zhuǎn)換得到扇形OAF的面積,再根據(jù)扇形面積公式即可求出.

解:(1)連結(jié)OD,

AD平分∠BAC,

∴∠OAD=∠CAD,

OAOD,

∴∠OAD=∠ODA,

∴∠ODA=∠CAD,

ODAC

DEAC,即∠AED90°,

∴∠ODE90°,即DEOD,

DE是⊙O的切線;

2)連接OF,

ODAC,

SAFDSAFO,

∵∠BAC60°,OAOF,

∴△OAF為等邊三角形,

∴∠AOF60°,

S陰影S扇形OAFπ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

1)(y22-(3y120;

25x32x29;

3t2t0.

42x27x30(配方法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,對(duì)角線AC、BD相交于點(diǎn)O,AC6BD8.點(diǎn)EAB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)F、G、H分別落在邊BCCD、AD上.設(shè) AEm

1)如圖①,當(dāng)m1時(shí),利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)

2)寫出矩形EFGH的個(gè)數(shù)及對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個(gè)三角形為勻稱三角形,這條中線為勻稱中線

1)如圖①,在RtABC中,∠C90°,ACBC,若RtABC勻稱三角形

①請(qǐng)判斷勻稱中線是哪條邊上的中線,

②求BCACAB的值.

2)如圖②,ABC是⊙O的內(nèi)接三角形,ABAC,∠BAC45°,SABC2,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,AD與⊙O交于點(diǎn)M,若ACD勻稱三角形,求CD的長,并判斷CM是否為ACD勻稱中線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AN上有一點(diǎn)B,AB5,tanMAN,點(diǎn)C從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度沿射線AN運(yùn)動(dòng),過點(diǎn)CCDAN交射線AM于點(diǎn)D,在射線CD上取點(diǎn)F,使得CFCB,連結(jié)AF.設(shè)點(diǎn)C的運(yùn)動(dòng)時(shí)間是t(秒)(t0).

1)當(dāng)點(diǎn)C在點(diǎn)B右側(cè)時(shí),求AD、DF的長.(用含t的代數(shù)式表示)

2)連結(jié)BD,設(shè)BCD的面積為S平方單位,求St之間的函數(shù)關(guān)系式.

3)當(dāng)AFD是軸對(duì)稱圖形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+2x+m+1x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=3;③拋物線上有兩點(diǎn)P(x1,y1)和Qx2y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G、F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDGF周長的最小值為,其中,判斷正確的序號(hào)是(

A.①②B.②③C.①③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax24ax6a0)與x軸交于A,B兩點(diǎn),且OB3OA,與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)E

1)求該拋物線的解析式,并直接寫出頂點(diǎn)D的坐標(biāo);

2)如圖2,直線y+n與拋物線交于G,H兩點(diǎn),直線AH,AG分別交y軸負(fù)半軸于M,N兩點(diǎn),求OM+ON的值;

3)如圖1,點(diǎn)P在線段DE上,作等腰BPQ,使得PBPQ,且點(diǎn)Q落在直線CD上,若滿足條件的點(diǎn)Q有且只有一個(gè),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺(tái)機(jī)床同時(shí)加工直徑為的同種規(guī)格零件,為了檢查兩臺(tái)機(jī)床加工零件的穩(wěn)定性,質(zhì)檢員從兩臺(tái)機(jī)床的產(chǎn)品中各抽取件進(jìn)行檢測(cè),結(jié)果如下(單位:):

(1)分別求出這兩臺(tái)機(jī)床所加工零件直徑的平均數(shù)和方差;

(2)根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),你認(rèn)為哪一臺(tái)機(jī)床生產(chǎn)零件的穩(wěn)定性更好一些,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,動(dòng)點(diǎn)M、N同時(shí)從A點(diǎn)出發(fā),點(diǎn)M沿AB以每秒1個(gè)單位長度的速度向中點(diǎn)B運(yùn)動(dòng),點(diǎn)N沿折現(xiàn)ADC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,則CMN的面積為S關(guān)于t函數(shù)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案