【題目】閱讀下列材料:
小明遇到一個(gè)問(wèn)題:AD是△ABC的中線(xiàn), 點(diǎn)M為BC邊上任意一點(diǎn)(不與點(diǎn)D重合),過(guò)點(diǎn)M作一直線(xiàn),使其等分△ABC的面積.
他的做法是:如圖1,連結(jié)AM,過(guò)點(diǎn)D作DN//AM交AC于點(diǎn)N,作直線(xiàn)MN,直線(xiàn)MN即為所求直線(xiàn).
請(qǐng)你參考小明的做法,解決下列問(wèn)題:
(1)如圖2, AE等分四邊形ABCD的面積,M為CD邊上一點(diǎn),過(guò)M作一直線(xiàn)MN,使其等分四邊形ABCD的面積(要求:在圖2中畫(huà)出直線(xiàn)MN,并保留作圖痕跡);
(2)如圖3,求作過(guò)點(diǎn)A的直線(xiàn)AE,使其等分四邊形ABCD的面積(要求:在圖3中畫(huà)出直線(xiàn)AE,并保留作圖痕跡).
【答案】見(jiàn)解析
【解析】(1)、連接AM,過(guò)E作EN∥AM,交AD于N,再做直線(xiàn)MN即可;(2)、取對(duì)角線(xiàn)BD的中點(diǎn)O,連接AO、CO,AC,過(guò)點(diǎn)O作OE∥AC交CD于E,直線(xiàn)AE就是所求直線(xiàn).
(1)如圖.連接AM,過(guò)E作EN∥AM,交AD于N,再做直線(xiàn)MN;
(2)如圖.取對(duì)角線(xiàn)BD的中點(diǎn)O,連接AO、CO,AC,過(guò)點(diǎn)O作OE∥AC交CD于E,直線(xiàn)AE就是所求直線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知k是不等于0的常數(shù),反比例函數(shù)與二次函數(shù)在同一坐標(biāo)系的大致圖象如圖,則它們的解析式可能分別是( )
A.y=﹣ ,y=﹣kx2+k
B.y= ,y=﹣kx2+k
C.y= ,y=kx2+k
D.y=﹣ ,y=﹣kx2﹣k
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,O為直線(xiàn)AB上一點(diǎn),OC平分∠AOE,∠DOE=90°,則以下結(jié)論正確的有____________.(只填序號(hào))
①∠AOD與∠BOE互為余角;
②OD平分∠COA;
③∠BOE=56°40′,則∠COE=61°40′;
④∠BOE=2∠COD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形的上底為+2-10,下底為3-5-80,高為40.(取3)
(1)用式子表示圖中陰影部分的面積;
(2)當(dāng)=10時(shí),求陰影部分面積的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同學(xué)們都知道,|5﹣(﹣2)|表示5與﹣2之差的絕對(duì)值,實(shí)際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.試探索:
(1)求|5﹣(﹣2)|=________.
(2)數(shù)軸上表示x和﹣1的兩點(diǎn)之間的距離表示為________.
(3)找出所有符合條件的整數(shù)x,使|x+5|+|x﹣2|=7,這樣的整數(shù)有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖1,點(diǎn),在直線(xiàn)的同側(cè),在直線(xiàn)上找一點(diǎn),使得的值最。∶鞯乃悸肥牵喝鐖D2,作點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),連接,則與直線(xiàn)的交點(diǎn)即為所求.
請(qǐng)你參考小明同學(xué)的思路,探究并解決下列問(wèn)題:
(1)如圖3,在圖2的基礎(chǔ)上,設(shè)與直線(xiàn)的交點(diǎn)為,過(guò)點(diǎn)作,垂足為. 若,,,寫(xiě)出的值為____________;
(2)將(1)中的條件“”去掉,換成“”,其它條件不變,寫(xiě)出此時(shí)的值 ___________;
(3)求+的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人沿同一路線(xiàn)登山,圖中線(xiàn)段OC、折線(xiàn)OAB分別是甲、乙兩人登山的路程y(米)與登山時(shí)間x(分)之間的函數(shù)圖象.請(qǐng)根據(jù)圖象所提供的信息,解答如下問(wèn)題:
(1)求甲登山的路程與登山時(shí)間之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)求乙出發(fā)后多長(zhǎng)時(shí)間追上甲?此時(shí)乙所走的路程是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)如圖1所示,平行四邊形紙片ABCD中,AD=5,SABCD=15,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D是形.
(2)如圖2所示,在(1)中的四邊形紙片AEE′D中,在EE′上取一點(diǎn)F,使EF=4,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
①求證:四邊形AFF′D是菱形;
②求四邊形AFF′D兩條對(duì)角線(xiàn)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線(xiàn)AC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com