【題目】我們把一個(gè)半圓與二次函數(shù)圖象的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn)(半圓與二次函數(shù)圖象的連接點(diǎn)除外),那么這條直線叫做“蛋圓”的切線.如圖,二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)D,AB為半圓直徑,半圓圓心為點(diǎn)M,半圓與y軸的正半軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)分別求出經(jīng)過點(diǎn)C和點(diǎn)D的“蛋圓”的切線的表達(dá)式.
【答案】(1)(0,);(2)y=x+;y=﹣2x﹣3.
【解析】
試題分析:(1)連接CM,易求點(diǎn)A,B的坐標(biāo),進(jìn)而可得到AB的長,則圓的半徑可求出,再由勾股定理可求出OC的長,繼而可求出點(diǎn)C的坐標(biāo);
(2)由(1)可知點(diǎn)C的坐標(biāo),設(shè)過點(diǎn)C的“蛋圓”的切線交x軸于點(diǎn)G,然后根據(jù)三角形性質(zhì)求出G點(diǎn)坐標(biāo),用待定系數(shù)法求出直線GC的解析式;因?yàn)榻?jīng)過點(diǎn)D的“蛋圓”切線過D點(diǎn),所以本題可設(shè)它的解析式為y=kx﹣3.根據(jù)圖象可求出拋物線的解析式,因?yàn)橄嗲,所以它們的交點(diǎn)只有一個(gè),進(jìn)而可根據(jù)一元二次方程的有關(guān)知識(shí)解決問題.
解:(1)∵二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)D,
∴點(diǎn)A(﹣1,0),點(diǎn)B的坐標(biāo)是(3,0),
∴AB=4,
∵半圓圓心為點(diǎn)M,
∴BM=AM=2,
∴OM=1,
連接CM,
∴OC==,
∴點(diǎn)C的坐標(biāo)是(0,);
(2)設(shè)過點(diǎn)C的“蛋圓”的切線交x軸于點(diǎn)G,
∵GC是⊙M的切線,
∴∠GCM=90°,
∴cos∠OMC==,
∴=,
∴MG=4,
∴G(﹣3,0),
∴直線GC的表達(dá)式為y=x+;
設(shè)過點(diǎn)D的直線表達(dá)式為y=kx﹣3,
∴,
∴x2﹣(2+k)x=0,
∴△=[﹣(2+k)]2=0,
∴k=﹣2,
∴過點(diǎn)D的“蛋圓”的切線的表達(dá)式為y=﹣2x﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°.以AB長為一邊作△ABD,且AD=BD,∠ADB=90°,取AB中點(diǎn)E,連DE、CE、CD.則∠EDC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是()
A. 有兩組對(duì)邊分別平行的四邊形是平行四邊形
B. 平行四邊形的對(duì)角線互相平分
C. 平行四邊形的對(duì)邊平行且相等
D. 平行四邊形的對(duì)角互補(bǔ),鄰角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=10,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí),另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度在線段AB上來回運(yùn)動(dòng)(從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A后,立即原速返回,再次到達(dá)B點(diǎn)后立即調(diào)頭向點(diǎn)A運(yùn)動(dòng).) 當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),P,Q兩點(diǎn)都停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x.
(1)當(dāng)x=3時(shí),線段PQ的長為 .
(2)當(dāng)P,Q兩點(diǎn)第一次重合時(shí),求線段BQ的長.
(3)是否存在某一時(shí)刻,使點(diǎn)Q恰好落在線段AP的中點(diǎn)上?若存在,請(qǐng)求出所有滿足條件的x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)兩位數(shù),個(gè)位數(shù)字為a,十位數(shù)字比個(gè)位數(shù)字大1,則這個(gè)兩位數(shù)可表示為
A、11a-1 B、11a-10 C、11a+1 D、11a+10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將點(diǎn)A(1,﹣3)沿x軸向左平移3個(gè)單位長度,再沿y軸向上平移5個(gè)單位長度后得到的點(diǎn)A′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的兩邊長分別為5cm和10 cm,則此三角形的周長是( )
A. 15 cm B. 20 cm C. 25 cm D. 20 cm或25 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小學(xué),我們已經(jīng)初步了解到,正方形的每個(gè)角都是90°,每條邊都相等.如圖,在正方形ABCD外側(cè)作直線AQ,且∠QAD=30°,點(diǎn)D關(guān)于直線AQ的對(duì)稱點(diǎn)為E,連接DE、BE,DE交AQ于點(diǎn)G,BE交AQ于點(diǎn)F.
(1)求∠ABE的度數(shù);
(2)若AB=6,求FG的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com