精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,PA與⊙O相切于點A,OP與⊙O相交于點B,點C是⊙O上一點,∠P=22°,求∠ACB度數.
分析:易得∠OAP=90°,利用三角形內角和定理可得∠AOP的度數,那么∠ACB=
1
2
∠AOP.
解答:解:∵PA是切線,
∴∠OAP=90°,
∵∠P=22°,
∴∠AOP=180°-∠OAP-∠P=68°,
∴∠ACB=
1
2
∠AOP=34°.(5分)
點評:本題用到的知識點為:三角形的內角和是180°,同弧所對的圓周角等于圓心角的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,PA與⊙O相切于A點,弦AB⊥OP,垂足為C,OP與⊙O相交于D點,已知OA=2,OP=4.
(1)求∠POA的度數;
(2)計算弦AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖,PA與⊙O相切,切點為A,PO交⊙O于點C,點B是優(yōu)弧CBA上一點,若∠ABC=32°,則∠P的度數為
26°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鄭州模擬)如圖,PA與⊙O相切,切點為A,PO交⊙O于點C,點B是優(yōu)弧
CBA
上一點,若∠ABC=31°,則∠P的度數為
28°
28°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,PA與⊙O相切于點A,PO的延長線與⊙O交于點C,若⊙O的半徑為3,PA=4.弦AC的長為
4
73
5
4
73
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,PA與⊙O相切于點A,弦AB⊥OP,垂足為C,OP與⊙O相交于點D,已知OA=2,OP=4.
(1)求∠POA的度數;
(2)求弦AB的長;
(3)過P、B兩點的直線是否是⊙O的切線,說明理由.

查看答案和解析>>

同步練習冊答案