【題目】如圖,中,,DE垂直平分AB,交線段BC于點E(點E與點C不重合),點F為AC上一點,點G為AB上一點(點G與點A不重合),且.
(1)如圖1,當時,線段AG和CF的數(shù)量關系是 .
(2)如圖2,當時,猜想線段AG和CF的數(shù)量關系,并加以證明.
(3)若,,,請直接寫出CF的長.
【答案】(1);(2),理由見解析;(3)2.5或5
【解析】
(1)如圖1,連接AE,根據(jù)線段垂直平分線的性質得到,根據(jù)等腰直角三角形的性質得到,,,根據(jù)全等三角形的性質即可得到結論;
(2)如圖2,連接AE,根據(jù)等腰三角形的性質和三角形的內角和得到,根據(jù)線段垂直平分線的性質得到,求得,根據(jù)相似三角形的性質得到,解直角三角形即可得到;
(3)①當G在DA上時,如圖3,連接AE,根據(jù)線段垂直平分線的性質得到,,由三角函數(shù)的定義得到,根據(jù)相似三角形的性質得到,過A作于點H由三角函數(shù)的定義即可得到結論.②當點G在BD上,如圖4,方法同(1).
解:(1)相等,理由:如圖1,連接AE,
∵DE垂直平分AB,
,
,
,
,
,,
,
,
,
,
,
,
;
故答案為:;
(2),
理由:如圖2,連接AE,
,
,
,
∵DE垂直平分AB,
,
,
,,
,
,
,
,
,
,
在中,,
,
,
;
(3)①當G在DA上時,如圖3,連接AE,
∵DE垂直平分AB,
,,
,
,
,
,
,
,
,
,
,
,
,
,
,
過A作于點H,
,
,
,
,
,
,
,
,
;
②當點G在BD上,如圖4,同(1)可得,,
,
,
,
,
綜上所述,CF的長為2.5或5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是⊙O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點C
(I)若∠ADE=25°,求∠C的度數(shù)
(II)若AB=AC,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx-5與x軸交于A(-1,0),B(5,0)兩點,與y軸交與點C.
(1)求拋物線的函數(shù)表達式;
(2)若點D是y軸上的點,且以B、C、D為頂點的三角形與△ABC相似,求點D的坐標;
(3)如圖2,CE//x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC、CE分別相交于點F,G,試探求當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標及最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動.
(1)P、Q兩點從出發(fā)開始到幾秒時,四邊形APQD為長方形?
(2)P、Q兩點從出發(fā)開始到幾秒時?四邊形PBCQ的面積為33cm2;
(3)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉,得△A′BO′,點 A、O 旋轉后的對應點為 A′、O′,記旋轉角為ɑ.
(1)如圖 1,若ɑ=90°,求 AA′的長;
(2)如圖 2,若ɑ=120°,求點 O′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是AB上一點,DE⊥AC于點E,F是AD的中點,FG⊥BC于點G,與DE交于點H,若FG=AF,AG平分∠CAB,連接GE,GD.
(1)求證:△ECG≌△GHD;
(2)小亮同學經(jīng)過探究發(fā)現(xiàn):AD=AC+EC.請你幫助小亮同學證明這一結論.
(3)若∠B=30°,判定四邊形AEGF是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC與點D,過點D作⊙O的切線EF,交AC于點E,交AB的延長線于點F.
求證:(1)BD=CD;
(2)∠BAC=2∠EDC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com