【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;
(2)過(guò)點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行與y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;
(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對(duì)稱軸上,使得以A、E、N、M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M、N的坐標(biāo).
【答案】
(1)
解:設(shè)拋物線解析式為y=a(x﹣2)2+9,
∵拋物線與y軸交于點(diǎn)A(0,5),
∴4a+9=5,
∴a=﹣1,
y=﹣(x﹣2)2+9=﹣x2+4x+5
(2)
解:當(dāng)y=0時(shí),﹣x2+4x+5=0,
∴x1=﹣1,x2=5,
∴E(﹣1,0),B(5,0),
設(shè)直線AB的解析式為y=mx+n,
∵A(0,5),B(5,0),
∴m=﹣1,n=5,
∴直線AB的解析式為y=﹣x+5;
設(shè)P(x,﹣x2+4x+5),
∴D(x,﹣x+5),
∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,
∵AC=4,
∴S四邊形APCD= ×AC×PD=2(﹣x2+5x)=﹣2x2+10x,
∴當(dāng)x=﹣ = 時(shí),
∴S四邊形APCD最大=
(3)
解:如圖,
過(guò)M作MH垂直于對(duì)稱軸,垂足為H,
∵M(jìn)N∥AE,MN=AE,
∴△HMN≌△AOE,
∴HM=OE=1,
∴M點(diǎn)的橫坐標(biāo)為x=3或x=1,
當(dāng)x=1時(shí),M點(diǎn)縱坐標(biāo)為8,
當(dāng)x=3時(shí),M點(diǎn)縱坐標(biāo)為8,
∴M點(diǎn)的坐標(biāo)為M1(1,8)或M2(3,8),
∵A(0,5),E(﹣1,0),
∴直線AE解析式為y=5x+5,
∵M(jìn)N∥AE,
∴MN的解析式為y=5x+b,
∵點(diǎn)N在拋物線對(duì)稱軸x=2上,
∴N(2,10+b),
∵AE2=OA2+0E2=26
∵M(jìn)N=AE
∴MN2=AE2,
∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2
∵M(jìn)點(diǎn)的坐標(biāo)為M1(1,8)或M2(3,8),
∴點(diǎn)M1,M2關(guān)于拋物線對(duì)稱軸x=2對(duì)稱,
∵點(diǎn)N在拋物線對(duì)稱軸上,
∴M1N=M2N,
∴1+(b+2)2=26,
∴b=3,或b=﹣7,
∴10+b=13或10+b=3
∴當(dāng)M點(diǎn)的坐標(biāo)為(1,8)時(shí),N點(diǎn)坐標(biāo)為(2,13),
當(dāng)M點(diǎn)的坐標(biāo)為(3,8)時(shí),N點(diǎn)坐標(biāo)為(2,3)
【解析】(1)設(shè)出拋物線解析式,用待定系數(shù)法求解即可;(2)先求出直線AB解析式,設(shè)出點(diǎn)P坐標(biāo)(x,﹣x2+4x+5),建立函數(shù)關(guān)系式S四邊形APCD=﹣2x2+10x,根據(jù)二次函數(shù)求出極值;(3)先判斷出△HMN≌△AOE,求出M點(diǎn)的橫坐標(biāo),從而求出點(diǎn)M,N的坐標(biāo).此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)關(guān)系式,函數(shù)極值的確定方法,平行四邊形的性質(zhì)和判定,解本題的關(guān)鍵是建立函數(shù)關(guān)系式求極值.
【考點(diǎn)精析】掌握二次函數(shù)的最值是解答本題的根本,需要知道如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【操作發(fā)現(xiàn)】在計(jì)算器上輸入一個(gè)正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運(yùn)算結(jié)果越來(lái)越接近1或都等于1.
【提出問(wèn)題】輸入一個(gè)實(shí)數(shù),不斷地進(jìn)行“乘以常數(shù)k,再加上常數(shù)b”的運(yùn)算,有什么規(guī)律?
【分析問(wèn)題】我們可用框圖表示這種運(yùn)算過(guò)程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(diǎn)(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(diǎn)(x2 , y1),然后再x軸上確定對(duì)應(yīng)的數(shù)x2 , …,以此類推.
【解決問(wèn)題】研究輸入實(shí)數(shù)x1時(shí),隨著運(yùn)算次數(shù)n的不斷增加,運(yùn)算結(jié)果x,怎樣變化.
(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進(jìn)行觀察研究;
(2)若k>1,又得到什么結(jié)論?請(qǐng)說(shuō)明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請(qǐng)?jiān)趚軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實(shí)數(shù)x1時(shí),運(yùn)算結(jié)果xn互不相等,且越來(lái)越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別為△ABC的邊AB、AC上的中點(diǎn),則△ADE的面積與四邊形BCED的面積的比為( )
A.1:2
B.1:3
C.1:4
D.1:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為正方形ABCD中CD邊上一點(diǎn),∠DAE=30°,P為AE的中點(diǎn),過(guò)點(diǎn)P作直線分別與AD、BC相交于點(diǎn)M、N.若MN=AE,則∠AMN等于________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分線交AD于點(diǎn)E,交BC于點(diǎn)F,則△BOF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年6月15日是父親節(jié),某商店老板統(tǒng)計(jì)了這四年父親節(jié)當(dāng)天剃須刀銷售情況,以下是根據(jù)該商店剃須刀銷售的相關(guān)數(shù)據(jù)所繪制統(tǒng)計(jì)圖的一部分.
請(qǐng)根據(jù)圖1、圖2解答下列問(wèn)題:
(1)近四年父親節(jié)當(dāng)天剃須刀銷售總額一共是5.8萬(wàn)元,請(qǐng)將圖1中的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)計(jì)算該店2015年父親節(jié)當(dāng)天甲品牌剃須刀的銷售額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】剪紙是揚(yáng)州的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品中是中心對(duì)稱圖形的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長(zhǎng)度為a,BM的長(zhǎng)度為b.
(1)圖形①中∠B=°,圖形②中∠E=°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風(fēng)箏一號(hào)”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號(hào)”. ①小明僅用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,需要這種紙片張;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com