【題目】如圖,E為正方形ABCD中CD邊上一點,∠DAE=30°,P為AE的中點,過點P作直線分別與AD、BC相交于點M、N.若MN=AE,則∠AMN等于________
【答案】60°或120°
【解析】
畫出符合的兩種情況,過N作NF⊥AD于F,根據(jù)HL證出Rt△MFN≌Rt△EDA,即可求出答案.
分為兩種情況:①如圖1,
過N作NF⊥AD于F,
則∠NFA=∠MFN=90°,
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=∠B=∠D=90°,
∴四邊形AFNB是矩形,
∴NF=AB=AD,
∵∠NFM=∠D=90°,
在Rt△MFN和Rt△EDA中
∴Rt△MFN≌Rt△EDA(HL),
∴∠AMN=∠AED,
∵∠DAE=30°,∠D=90°,
∴∠AMN=∠AED=180°30°90°=60°;
②如圖2,
同法可求Rt△MFN≌Rt△EDA,
所以∠FMN=∠AED=60°,
所以∠AMN=180°60°=120°.
故答案為:60°或120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=45°,∠C=30°,點D是BC上一點,連接AD,過點A作AG⊥AD,在AG上取點F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.
(1)若AB=2 ,求BC的長;
(2)如圖1,當點G在AC上時,求證:BD= CG;
(3)如圖2,當點G在AC的垂直平分線上時,直接寫出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第十二屆全國人大四次會議審議通過的《中華人民共和國慈善法》將于今年9月1日正式實施,為了了解居民對慈善法的知曉情況,某街道辦從轄區(qū)居民中隨機選取了部分居民進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的扇形圖.若該轄區(qū)約有居民9000人,則可以估計其中對慈善法“非常清楚”的居民約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考考生最喜歡做哪種類型的英語客觀題,2015年志愿者奔赴全市中考各考點對英語客觀題的“聽力部分、單項選擇、完型填空、閱讀理解、口語應(yīng)用”進行了問卷調(diào)查,要求每位考生都自主選擇其中一個類型,為此隨機調(diào)查了各考點部分考生的意向.并將調(diào)查結(jié)果繪制成如圖的統(tǒng)計圖表(問卷回收率為100%,并均為有效問卷).
被調(diào)查考生選擇意向統(tǒng)計表
題型 | 所占百分比 |
聽力部分 | a |
單項選擇 | 35% |
完型填空 | b |
閱讀理解 | 10% |
口語應(yīng)用 | c |
根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求本次被調(diào)查的考生總?cè)藬?shù)及a、b、c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)全市參加這次中考的考生共有42000人,試估計全市考生中最喜歡做“單項選擇”這類客觀題的考生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于( 。
A.12.5°
B.15°
C.20°
D.22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線a∥b,直線c與直線a、b分別相交于C、D兩點,直線d與直線a、b分別相交于A、B兩點.
(1)如圖1,當點P在線段AB上(不與A、B兩點重合)運動時,∠1、∠2、∠3之間有怎樣的大小關(guān)系?請說明理由;
(2)如圖2,當點P在線段AB的延長線上運動時,∠1、∠2、∠3之間的大小關(guān)系為________;
(3)如圖3,當點P在線段BA的延長線上運動時,∠1、∠2、∠3之間的大小關(guān)系為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行與y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是線段AB的中點.
(1)若點D在CB上,且DB=1.5cm,AD=6.5cm,求線段CD的長度.
(2)若將(1)中的“點D在CB上”改為“點D在CB的延長線上”,其它條件不變,請畫出相應(yīng)的示意圖,并求出此時線段CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和y= 的表達式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com