【題目】暑假期間,學校組織學生去某景點游玩,甲旅行社說:“如果帶隊的一名老師購買全票,則學生享受半價優(yōu)惠”; 乙旅行社說:“所有人按全票價的六折優(yōu)惠”.已知全票價為a元,學生有x人,帶隊老師有1人.
(1)試用含a和x的式子表示甲、乙旅行社的費用;
(2)若有50名學生參加本次活動,請你為他們選擇一家更優(yōu)惠的旅行社.
科目:初中數(shù)學 來源: 題型:
【題目】隨著手機的普及,微信一種聊天軟件的興起,許多人抓住這種機會,做起了“微商”,很多農(nóng)產(chǎn)品也改變了原來的銷售模式,實行了網(wǎng)上銷售,這不剛大學畢業(yè)的小明把自家的冬棗產(chǎn)品也放到了網(wǎng)上,他原計劃每天賣100斤冬棗,但由于種種原因,實際每天的銷售量與計劃量相比有出入,下表是某周的銷售情況超額記為正,不足記為負單位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 |
|
|
|
|
|
|
|
(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣出 ______ 斤;
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售 ______ 斤;
(3)本周實際銷售總量達到了計劃數(shù)量沒有?
(4)若冬季每斤按8元出售,每斤冬棗的運費平均3元,那么小明本周一共收入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=2 DQ,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E為AD上一點,FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長為_________(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、C、N三點在同一直線上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,則∠BCM:∠BCN=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣3的對稱軸為直線x=1,交x軸于A、B兩點,交y軸于C點,其中B點的坐標為(3,0).
(1)直接寫出A點的坐標;
(2)求二次函數(shù)y=ax2+bx﹣3的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,邊長為2的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點,現(xiàn)將正方形OABC繞O點順時針旋轉,當A點第一次落在直線y=x上時停止旋轉,旋轉過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖).
(1)旋轉過程中,當MN和AC平行時,求正方形OABC旋轉的角度;
(2)試證明旋轉過程中,△MNO的邊MN上的高為定值;
(3)折△MBN的周長為p,在旋轉過程中,p值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,請給予證明,并求出p的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請你作出猜想:當∠AMN= °時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結DE.
(1)當∠BAD=60°,求∠CDE的度數(shù);
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com