【題目】菱形的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B落在y軸正半軸上,點(diǎn)A、D落在第一象限內(nèi),且D點(diǎn)坐標(biāo)為

1)如圖1,若反比例函數(shù))的圖象經(jīng)過點(diǎn)A,求k的值;

2)菱形向右平移t個(gè)單位得到菱形,如圖2

請直接寫出點(diǎn)、的坐標(biāo)(用合1的代數(shù)式表示):、

是否存在反比例函數(shù)),使得點(diǎn)同時(shí)落在)的圖象上?若存在,求n的值;若不存在,請說明理由.

【答案】1;(2存在,理由見解析

【解析】

1)根據(jù)點(diǎn)D的坐標(biāo)為(4,3),即可得出DE的長以及DO的長,即可得出A點(diǎn)坐標(biāo),進(jìn)而求出k的值;

2)①根據(jù)點(diǎn)向右平移,縱坐標(biāo)不變,橫坐標(biāo)加上移動(dòng)單位長即可;②把寫出點(diǎn)坐標(biāo)代入,可得關(guān)于n、t的方程組,求解即可.

1)如圖,作軸于點(diǎn)F

∵點(diǎn)D的坐標(biāo)為

,,

,

A點(diǎn)坐標(biāo)為

2

存在,理由如下:

點(diǎn)、同時(shí)落在)的圖象上

,

,

所以,存在,此時(shí)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進(jìn)取主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出進(jìn)取所對應(yīng)的圓心角的度數(shù).

(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是有公共頂點(diǎn)的直角三角形,,點(diǎn)為射線,的交點(diǎn).

1)如圖1,若是等腰三角形,求證:

2)如圖2,若,問:(1)中的結(jié)論是否成立?請說明理.

3)在(1)的條件下,,,若把繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),請直接寫出的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題實(shí)驗(yàn))如圖,在地面上有兩根等長立柱,之間懸掛一根近似成拋物線的繩子.

1)求繩子最低點(diǎn)到地面的距離;

2)如圖,因?qū)嶋H需要,需用一根立柱撐起繩子.

若在離4米的位置處用立柱撐起,使立柱左側(cè)的拋物線的最低點(diǎn)距1米,離地面1.8米,求的長;

將立柱來回移動(dòng),移動(dòng)過程中,在一定范圍內(nèi),總保持立柱左側(cè)拋物線的形狀不變,其函數(shù)表達(dá)式為,當(dāng)拋物線最低點(diǎn)到地面距離為0.5米時(shí),求的值.

(問題抽象)如圖,在平面直角坐標(biāo)系中,函數(shù)的圖像記為,函數(shù)的圖像記為,其中是常數(shù),圖像、合起來得到的圖像記為

設(shè)上的最低點(diǎn)縱坐標(biāo)為,當(dāng)時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且關(guān)于直線對稱,點(diǎn)A的坐標(biāo)為(﹣10).

(Ⅰ)求拋物線C的解析式和頂點(diǎn)坐標(biāo);

(Ⅱ)將拋物線繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°得拋物線,且有點(diǎn)Pmt)既在拋物線上,也在拋物線上,求m的值;

(Ⅲ)當(dāng)時(shí),二次函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課外興趣小組為了解某段路上機(jī)動(dòng)車的車速,抽查了一段時(shí)間內(nèi)若干輛車的車速(車速取整數(shù),單位:千米/時(shí))并制成如圖所示的頻數(shù)分布直方圖.已知車速在41千米/時(shí)到50千米/時(shí)的車輛數(shù)占車輛總數(shù)的

1)在這段時(shí)間內(nèi)他們抽查的車有 輛;

2)被抽查車輛的車速的中位數(shù)所在速度段(單位:千米/時(shí))是(

A30.5~40.5 B40.5~50.5 C50.5~60.5 D60.5~70.5

3)補(bǔ)全頻數(shù)分布直方圖;

4)如果全天超速(車速大于60千米/時(shí))的車有200輛,則當(dāng)天的車流量約為多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺(tái)機(jī)床同時(shí)加工一批直徑為100毫米的零件,為了檢驗(yàn)產(chǎn)品的質(zhì)量,從產(chǎn)品中隨機(jī)抽查6件進(jìn)行測量,測得的數(shù)據(jù)如下:(單位:毫米)甲機(jī)床:99 98 100 100 103乙機(jī)床:99 100 102 99 100 100則加工這批零件性能較好的機(jī)床是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小楠是一個(gè)樂學(xué)習(xí),善思考,愛探究的同學(xué),她對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,請你將下列探究過程補(bǔ)充完整:

1)函數(shù)的自變量的取值范圍是________________;

2)用描點(diǎn)法畫函數(shù)圖象:

列表:

-5

-2

-1

0

2

3

4

7

2

3

6

3

2

1

表中的值為______________,的值為_______________

②描點(diǎn)連線:請?jiān)谟覉D畫出該圖象的另一部分.

3)觀察函數(shù)圖象,得到函數(shù)的性質(zhì)之一:當(dāng)_____________時(shí),函數(shù)值的增大而增大.

4)應(yīng)用:若,則的取值范圍是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖①,一次函數(shù) y x - 2 的圖像交 x 軸于點(diǎn) A,交 y 軸于點(diǎn) B,二次函數(shù) y x2 bx c的圖像經(jīng)過 A、B 兩點(diǎn),與 x 軸交于另一點(diǎn) C

(1)求二次函數(shù)的關(guān)系式及點(diǎn) C 的坐標(biāo);

(2)如圖②,若點(diǎn) P 是直線 AB 上方的拋物線上一點(diǎn),過點(diǎn) P PDx 軸交 AB 于點(diǎn) D,PEy 軸交 AB 于點(diǎn) E,求 PDPE 的最大值;

(3)如圖③,若點(diǎn) M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn) M的坐標(biāo).

① ②

查看答案和解析>>

同步練習(xí)冊答案