【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,3),B(1,0),連接BA,將線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BC,反比例函數(shù)y的圖象G經(jīng)過(guò)點(diǎn)C

(1)請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo)及k的值;

(2)若點(diǎn)P在圖象G上,且∠POBBAO,求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,若Q(0,m)為y軸正半軸上一點(diǎn),過(guò)點(diǎn)Qx軸的平行線與圖象G交于點(diǎn)M,與直線OP交于點(diǎn)N,若點(diǎn)M在點(diǎn)N左側(cè),結(jié)合圖象,直接寫(xiě)出m的取值范圍.

【答案】(1)點(diǎn)C的坐標(biāo)(4,1),k的值是4; (2) P(2,);(3)

【解析】

1)過(guò)C點(diǎn)作CHx軸于H,如圖,利用旋轉(zhuǎn)的性質(zhì)得BA=BC,∠ABC=90°,再證明ABO≌△BCH得到CH=OB=1,BH=OA=3,則C4,1),然后把C點(diǎn)坐標(biāo)代入y=(x0)中可計(jì)算出k的值;
2)畫(huà)出過(guò)點(diǎn)C的反比例函數(shù)y=(x0)的草圖,結(jié)合條件點(diǎn)P在圖象G上,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;
3)由Q0,m),得到OQ=m,得到Mm),N3mm),根據(jù)點(diǎn)M在點(diǎn)N左側(cè),列不等式即可得到結(jié)論.

解:(1) 過(guò)C點(diǎn)作CHx軸于H,如圖,
∵線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到線段BC
BA=BC,∠ABC=90°,
∵∠ABO+CBH=90°,∠ABO+BAO=90°,
∴∠BAO=CBH
ABOBCH

∴△ABO≌△BCHAAS),
CH=OB=1BH=OA=3,
C4,1),
∵點(diǎn)C落在函數(shù)y=x0)的圖象上,
k=4×1=4;

故答案為:點(diǎn)C的坐標(biāo)(41),k的值是4

(2)過(guò)OOPBC于點(diǎn)P,過(guò)PPEx軸于E,
∵∠POE=OAB,∠AOB=PEO,

∴△OAB∽△OHP
PEOE=OBOA=13,∵點(diǎn)P

P2

(3) ,理由:

Q0m),

OQ=m
QMx軸,與圖象G交于點(diǎn)M,與直線OP交于點(diǎn)N,
Mm),N3mm),
∵點(diǎn)M在點(diǎn)N左側(cè),
3m
m0,
m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A′B′C′∽△ABC,且A′E′,AE是角平分線,A′D′,AD是中線.求證:A′D′E′∽△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABO的直徑,APO的切線,A是切點(diǎn),BPO交于點(diǎn)C

1)如圖,若∠P35°,連OC,求∠BOC的度數(shù);

2)如圖,若DAP的中點(diǎn),求證:直線CDO的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)求該二次函數(shù)與x軸的交點(diǎn)坐標(biāo)和頂點(diǎn);

2)在所給坐標(biāo)系中畫(huà)出該二次函數(shù)的大致圖象,并寫(xiě)出當(dāng)y0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角ABC中,A為直角,AB6,AC8.點(diǎn)PQ、R分別在ABBC、CA邊上同時(shí)開(kāi)始作勻速運(yùn)動(dòng),2秒后三個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),點(diǎn)P由點(diǎn)A出發(fā)以每秒3個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q由點(diǎn)B出發(fā)以每秒5個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)R由點(diǎn)C出發(fā)以每秒4個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),用t(秒)(0≤t≤2)表示運(yùn)動(dòng)時(shí)間,在運(yùn)動(dòng)過(guò)程中:

1)當(dāng)t為何值時(shí),APR的面積為4;

2)求出CRQ的最大面積;

3)是否存在t,使PQR90°?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+cab,c為常數(shù),且a≠0)中的xy的部分對(duì)應(yīng)值如下表給出了以下結(jié)論:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

①二次函數(shù)yax2+bx+c有最小值,最小值為﹣3;②當(dāng)﹣x2時(shí),y0;③二次函數(shù)yax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸的兩側(cè);④當(dāng)x1時(shí),yx的增大而減小.則其中正確結(jié)論有(

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,已知⊙O的直徑為ABACAB于點(diǎn)A, BC與⊙O相交于點(diǎn)D,在AC上取一點(diǎn)E使得ED=EA下面四個(gè)結(jié)論:①ED是⊙O的切線;BC=2OE③△BOD為等邊三角形④△EOD CAD,正確的是(

A. ①② B. ②④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷售一批產(chǎn)品,進(jìn)價(jià)每件50元,經(jīng)市場(chǎng)調(diào)研,發(fā)現(xiàn)售價(jià)為60元時(shí),可銷售800件,售價(jià)每提高1元,銷售量將減少25.公司規(guī)定:售價(jià)不超過(guò)70.

(1)若公司在這次銷售中要獲得利潤(rùn)10800元,問(wèn)這批產(chǎn)品的售價(jià)每件應(yīng)提高多少元?

(2)若公司要在這次銷售中獲得利潤(rùn)最大,問(wèn)這批產(chǎn)品售價(jià)每件應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圖12中,⊙O過(guò)了正方形網(wǎng)格中的格點(diǎn)AB、C、D,請(qǐng)你僅用無(wú)刻度的直尺分別在圖1、圖2、圖3中畫(huà)出一個(gè)滿足下列條件的∠P

1)頂點(diǎn)P在⊙O上且不與點(diǎn)A、BC、D重合;

2)∠P在圖1、圖2、圖3中的正切值分別為1、2

查看答案和解析>>

同步練習(xí)冊(cè)答案