如圖,AB是⊙O的直徑,AM和BN是它的兩條切線,DE切⊙O于點E,交AM與于點D,交BN于點C,F(xiàn)是CD的中點,連接OF.
(1)求證:OD∥BE;
(2)猜想:OF與CD有何數(shù)量關系?并說明理由.
【答案】分析:(1)連接OE,由于AM、DE是⊙O的切線,∠OAD=∠OED=90°,那么DA=DE,而OD=OD,于是可證△AOD≌△EOD,從而有∠AOD=∠EOD=∠AOE,根據(jù)圓周角定理有∠ABE=∠AOE,那么∠AOD=∠ABE,從而有OD∥BE;
(2)連接OF,同(1)證明全等一樣,易證△OCE≌△OCB,那么∠OCB=∠OCE,而AM∥BN,于是可得∠ADO+∠EDO+∠OCB+∠OCE=180°,再由(1)得∠ADO=∠EDO,易證∠EDO+∠OCE=90°,從而可知△OCD是直角三角形,而F是斜邊上的中點,于是OF=CD.
解答:解:(1)證明:連接OE,
∵AM、DE是⊙O的切線,
∴DA=DE,∠OAD=∠OED=90°,
又∵OD=OD,
在△AOD和△EOD中,
,
∴△AOD≌△EOD,
∴∠AOD=∠EOD=∠AOE,
∵∠ABE=∠AOE,
∴∠AOD=∠ABE,
∴OD∥BE;

(2)OF=CD.
理由:連接OC,
∵BC、CE是⊙O的切線,
∴∠OCB=∠OCE,
∵AM∥BN,
∴∠ADO+∠EDO+∠OCB+∠OCE=180°,
由(1)得∠ADO=∠EDO,
∴2∠EDO+2∠OCE=180°,
即∠EDO+∠OCE=90°,
在Rt△DOC中,
∵F是DC的中點,
∴OF=CD.
點評:本題考查了全等三角形的判定和性質(zhì)、圓周角定理、平行線的判定、直角三角形斜邊的中線等于斜邊的一半.解題的關鍵是連接OE、OC,構(gòu)造直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓弧(如圖2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案