【題目】如圖所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D,E,AD,CE相交于點(diǎn)H,已知EH=EB=6,AE=8,則CH的長(zhǎng)是( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
由AD垂直于BC,CE垂直于AB,利用垂直的定義得到一對(duì)角為直角,再由一對(duì)對(duì)頂角相等,利用三角形的內(nèi)角和定理得到一對(duì)角相等,再由一對(duì)直角相等,以及一對(duì)邊相等,利用AAS得到三角形AEH與三角形EBC全等,由全等三角形的對(duì)應(yīng)邊相等得到AE=EC,由EC-EH即可求出HC的長(zhǎng).
∵AD⊥BC,CE⊥AB,
∴∠ADB=∠AEH=90°,
∵∠AHE=∠CHD,
∴∠BAD=∠BCE,
∵在△HEA和△BEC中,
,
∴△HEA≌△BEC(AAS),
∴EC=AE=8,
則CH=EC-EH=8-6=2,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)為8,寬為4的長(zhǎng)方形在平面直角坐標(biāo)系中的位置如圖所示,動(dòng)點(diǎn)P從(0,3)點(diǎn)出發(fā),沿圖中所示的箭頭方向運(yùn)動(dòng),到(3,0)點(diǎn)時(shí)記為第一次反彈,以后每當(dāng)碰到長(zhǎng)方形的邊時(shí)記一次反彈,反彈時(shí)反射角等于入射角,那么點(diǎn)P第2018次反彈時(shí)碰到長(zhǎng)方形邊上的點(diǎn)的坐標(biāo)為( )
A. (1,4) B. (8,3) C. (7,4) D. (3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月5日是世界環(huán)境日,為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某市第一中學(xué)舉行了“環(huán)保知識(shí)競(jìng)賽”,參賽人數(shù)1000人,為了了解本次競(jìng)賽的成績(jī)情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(jī)(滿分為100分,得分取整數(shù))進(jìn)行統(tǒng)計(jì),并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:
(1)直接寫出a的值,并補(bǔ)全頻數(shù)分布直方圖.
分組 | 頻數(shù) | 頻率 |
49.5~59.5 | 0.08 | |
59.5~69.5 | 0.12 | |
69.5~79.5 | 20 | |
79.5~89.5 | 32 | |
89.5~100.5 | a |
(2)若成績(jī)?cè)?/span>80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績(jī)?yōu)閮?yōu)秀的約為多少人?
(3)若這組被抽查的學(xué)生成績(jī)的中位數(shù)是80分,請(qǐng)直接寫出被抽查的學(xué)生中得分為80分的至少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行開業(yè)酬賓活動(dòng),設(shè)立了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖所示,兩個(gè)轉(zhuǎn)盤均被等分),并規(guī)定:顧客購買滿188元的商品,即可任選一個(gè)轉(zhuǎn)盤轉(zhuǎn)動(dòng)一次,轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域內(nèi)容即為優(yōu)惠方式;若指針?biāo)竻^(qū)域空白,則無優(yōu)惠.已知小張?jiān)谠撋虉?chǎng)消費(fèi)300元
(1)若他選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤1,則他能得到優(yōu)惠的概率為多少?
(2)選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤1和轉(zhuǎn)盤2,哪種方式對(duì)于小張更合算,請(qǐng)通過計(jì)算加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、F、E、C在同一直線上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC 于 B,過 B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)請(qǐng)寫出△ABC各頂點(diǎn)的坐標(biāo);
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫出點(diǎn)A′,B′,C′的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com