【題目】如圖,在平面直角坐標(biāo)系中,點B坐標(biāo)為(-2,1).

1)請在圖中畫出將四邊形ABCD關(guān)于y軸對稱后的四邊形ABCD,并直接寫出點AB、C、D的坐標(biāo);

2)求四邊形ABCD的面積.

【答案】1)見解析,A6,-2)、B2,1)、C6,3)、D50);(2

【解析】

1)根據(jù)軸對稱平移的性質(zhì)畫出圖形,寫出各點坐標(biāo)即可;

2)連接AC,利用S四邊形ABCD=SABC-SACD即可得出結(jié)論.

解:(1)如圖所示,四邊形ABCD即為所求:

其中A6-2)、B2,1)、C6,3)、D5,0);

2S四邊形ABCD=SABC-SACD=×5×4-×5×1

=10-

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知射線AC是∠MAN的角平分線, NAC=60°, B, D分別是射線AN. AM上的點,連接BD.

(1)在圖①中,若∠ABC=ADC=90°,求∠CDB的大;

(2)在圖②中,若∠ABC+ADC=180°,求證:四邊形ABCD的面積是個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MFAD,FNDC,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們在小學(xué)已經(jīng)學(xué)過了對邊分別平行的四邊形叫做平行四邊形,如圖1,平行四邊形MNPQ的一邊PQ作左右平移,圖2反映它的邊NP的長度(cm)隨時間ts)變化而變化的情況,請解答下列問題:

1)在這個變化過程中,自變量是______,因變量是______;

2)觀察圖2,PQ向左平移前,邊NP的長度是______cm,請你根據(jù)圖象呈現(xiàn)的規(guī)律寫出05秒間lt的關(guān)系式;

3)填寫下表,并根據(jù)表中呈現(xiàn)的規(guī)律寫出814秒間1t的關(guān)系式.

PQ邊的運動時間/s

8

9

10

11

12

13

14

NP的長度/cm

18

15

12

______

6

3

0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

《張丘建算經(jīng)》是一部數(shù)學(xué)問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿.其中提出并解決了一個在數(shù)學(xué)史上非常著名的不定方程問題,通常稱為百雞問題今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一,凡百錢買雞百只,問雞翁、母、雛各幾何.

譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,現(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?結(jié)合你學(xué)過的知識,解決下列問題:

(1)若設(shè)公雞有x只,母雞有y只,

①則小雞有______只,買小雞一共花費______文錢;(用含x,y的式子表示)

②根據(jù)題意列出一個含有x,y的方程:______;

(2)若對百雞問題增加一個條件:公雞數(shù)量是母雞數(shù)量的3倍,求此時公雞、母雞、小雞各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADC都是邊長相等的等邊三角形,點E、F同時分別從點B、A出發(fā),各自沿BAAD方向運動到點A、D停止,運動的速度相同,連接EC、FC

1)在點E、F運動過程中∠ECF的大小是否隨之變化?請說明理由;

2)在點E、F運動過程中,以點AE、CF為頂點的四邊形的面積變化了嗎?請說明理由;

3)連接EF,在圖中找出和∠ACE相等的所有角,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某飛機模型的機翼形狀如圖所示,其中ABDC,BAE=90°,根據(jù)圖中的數(shù)據(jù)求CD的長?(精確到1cm)(參考數(shù)據(jù):sin37°0.60,cos37°0.80,tan37°0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,,是對角線,于點,于點

(1)如圖1,求證:

(2)如圖2,當(dāng)時,連接,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形的面積都等于四邊形面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于A點,且點A的橫坐標(biāo)是4.雙曲線上有一動點Cm,n, .過點A軸垂線,垂足為B,過點C軸垂線,垂足為D,聯(lián)結(jié)OC

1)求的值;

2)設(shè)的重合部分的面積為S,求Sm的函數(shù)關(guān)系;

3)聯(lián)結(jié)AC,當(dāng)?shù)冢?/span>2)問中S的值為1時,求的面積.

查看答案和解析>>

同步練習(xí)冊答案