【題目】下列命題正確的有 ( )個
①40°角為內(nèi)角的兩個等腰三角形必相似
②若等腰三角形一腰上的高等于腰長的一半,則這個等腰三角形的底角為750
③一組對邊平行,另一組對邊相等的四邊形是平行四邊形
④一個等腰直角三角形的三邊是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1
⑤若△ABC的三邊a、b、c滿足a2+b2+c2+338=10a+24b+26c,則此△為等腰直角三角形。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】A
【解析】
根據(jù)三角形的內(nèi)角和定理,平行四邊形的判定定理,相似三角形的判定定理,等腰三角形的性質(zhì),等腰直角三角形的性質(zhì),配方法的應用對5個結(jié)論逐一分析即可.
解:①40°角為內(nèi)角兩個等腰三角形有2種情況,
一是頂角為40°的一個等腰三角形,二是底角為40°的一個等腰三角形,那么這兩個三角形不相似,所以此結(jié)論不正確;
②高在內(nèi)部時,頂角為30度,底角75度高在外部時,頂角的外角30度,底角15度.所以有2種情況:15度或75度,所以此結(jié)論不正確;
③一組對邊平行,另一組對邊相等的四邊形也可以是梯形,所以此結(jié)論不正確;
④∵一個等腰直角三角形的三邊是a、b、c,(a>b=c),
∴a為等腰直角三角形的斜邊,
∴此結(jié)論正確;
⑤
,
∴△ABC是直角三角形.而不是等腰直角三角形.
∴此結(jié)論不正確;
因此命題正確的有1個.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1,且過點(,0).有下列結(jié)論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結(jié)論是_____(填寫正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,連接DE.過點A作AF⊥DE,垂足為F,⊙O經(jīng)過點C、D、F,與AD相交于點G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC和△DEF中,若∠A=∠D,則下列四個條件:①=;②=;③∠B=∠F;④∠E=∠F中,一定能推得△ABC與△DEF相似的共有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并測得OE=0.8 m,OF=3 m,求圍墻AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《九章算術(shù)》中記載了一個問題:“今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?” .其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B出有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,求正方形城池的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點F在邊AC上,DF與BE相交于點G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com