【題目】在四邊形ABCD中,AC⊥BD,AB=AD,要使四邊形ABCD是菱形,只需添加一個(gè)條件,這個(gè)條件可以是_____(只要填寫一種情況).
【答案】(本題答案不唯一)
【解析】
首先根據(jù)條件可得∠AOD=∠AOB=90°,再證明Rt△ABO≌Rt△ADO,從而得到BO=DO,再證明△ABO≌Rt△CDO,進(jìn)而得到AB=CD,再加上條件AB∥CD可得到四邊形ABCD是平行四邊形,又有AB=AD可證出四邊形ABCD是菱形.
∵AC⊥BD, ∴∠AOD=∠AOB=90°,
在Rt△ABO和Rt△ADO中 AO=AO,AB=AD, ∴Rt△ABO≌Rt△ADO, ∴BO=DO,
∵AB∥CD, ∴∠ABO=∠CDO,
在△ABO和Rt△CDO中 ∠AOB=∠DOC,∠CDO=∠ABO ,BO=DO,
∴△ABO≌Rt△CDO, ∴AB=CD, ∴四邊形ABCD是平行四邊形,
又∵AB=AD, ∴四邊形ABCD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),M是AD延長線上一點(diǎn),且MD=BE,連接CE,CM.
(1)求證:∠BCE=∠DCM;
(2)若點(diǎn)N在邊AD上,且∠NCE=45°,連接NC,NE,求證:NE=BE+DN;
(3)在(2)的條件下,若DN=2,MD=3,求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金湖中學(xué)社團(tuán)活動(dòng)開展地豐富多彩.七年級(jí)數(shù)學(xué)社團(tuán)課上同學(xué)們?cè)谔骄恳粩?shù)值轉(zhuǎn)換器,原理如圖所示.開始輸入x值為5,可發(fā)現(xiàn)第一次輸出的結(jié)果是8,第2次輸出結(jié)果是4,依次下去…,第2018次輸出的結(jié)果是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點(diǎn)M為銳角三角形ABC內(nèi)任意一點(diǎn),連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN.
(1)求證:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,則稱點(diǎn)M為△ABC的費(fèi)馬點(diǎn).若點(diǎn)M為△ABC的費(fèi)馬點(diǎn),試求此時(shí)∠AMB、∠BMC、∠CMA的度數(shù);
(3)小翔受以上啟發(fā),得到一個(gè)作銳角三角形費(fèi)馬點(diǎn)的簡(jiǎn)便方法:如圖②,分別以△ABC的AB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設(shè)交點(diǎn)為M,則點(diǎn)M即為△ABC的費(fèi)馬點(diǎn).試說明這種作法的依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.
(1)求證:EO=DC;
(2)若菱形ABCD的邊長為10,∠EBA=60°,求:菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)在一樓與二樓之間裝有一部自動(dòng)扶梯,以均勻的速度向上行駛,一男孩與一女孩同時(shí)從自動(dòng)扶梯上走到二樓(扶梯本身也在行駛).如果二人都做勻速運(yùn)動(dòng),且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的兩倍.又已知男孩走了27級(jí)到達(dá)頂部,女孩走了18級(jí)到達(dá)頂部(二人每步都只跨1級(jí)).求扶梯有多少級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列判斷:
①若|﹣a|=a,則a<0;
②有理數(shù)包括整數(shù)、0和分?jǐn)?shù);
③任何正數(shù)都大于它的倒數(shù);
④2ax2﹣xy+y2是三次三項(xiàng)式;
⑤幾個(gè)有理數(shù)相乘,當(dāng)負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積一定為負(fù).
上述判斷正確的有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com