【題目】如圖①,點M為銳角三角形ABC內(nèi)任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN.
(1)求證:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,則稱點M為△ABC的費馬點.若點M為△ABC的費馬點,試求此時∠AMB、∠BMC、∠CMA的度數(shù);
(3)小翔受以上啟發(fā),得到一個作銳角三角形費馬點的簡便方法:如圖②,分別以△ABC的AB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,則點M即為△ABC的費馬點.試說明這種作法的依據(jù).
【答案】(1)見解析;(2)∠BMC =120°;∠AMB =120°;∠AMC=120°;(3)線段EC與BF的交點即為△ABC的費馬點.
【解析】
(1)結(jié)合等邊三角形的性質(zhì),根據(jù)SAS可證△AMB≌△ENB;
(2)連接MN,由(1)的結(jié)論證明△BMN為等邊三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以當E、N、M、C四點共線時,AM+BM+CM的值最小,從而可求此時∠AMB、∠BMC、∠CMA的度數(shù);
(3)根據(jù)(2)中費馬點的定義,又△ABC的費馬點在線段EC上,同理也在線段BF上,因此線段EC和BF的交點即為△ABC的費馬點.
(1)證明:∵△ABE為等邊三角形,
∴AB=BE,∠ABE=60°.
而∠MBN=60°,
∴∠ABM=∠EBN.
在△AMB與△ENB中,
∵
∴△AMB≌△ENB(SAS).
(2)連接MN.
由(1)知,AM=EN.
∵∠MBN=60°,BM=BN,
∴△BMN為等邊三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
∴當E、N、M、C四點共線時,AM+BM+CM的值最。
此時,∠BMC=180°﹣∠NMB=120°;
∠AMB=∠ENB=180°﹣∠BNM=120°;
∠AMC=360°﹣∠BMC﹣∠AMB=120°.
(3)由(2)知,△ABC的費馬點在線段EC上,同理也在線段BF上.
因此線段EC與BF的交點即為△ABC的費馬點.
故答案為:(1)見解析;(2)∠BMC =120°;∠AMB =120°;∠AMC=120°;(3)線段EC與BF的交點即為△ABC的費馬點.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,∠BOC=60°,頂點C的坐標為(m,3 ),反比例函數(shù)y= 的圖象與菱形對角線AO交D點,連接BD,當DB⊥x軸時,k的值是( )
A.6
B.﹣6
C.12
D.﹣12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上點A、C對應的數(shù)分別為a、c,且a、c,滿足|a+4|+(c﹣1)2018=0,點O對應的數(shù)為0,點B對應的數(shù)為﹣3.
(1)求數(shù)a、c的值;
(2)點A,B沿數(shù)軸同時出發(fā)向右勻速運動,點A速度為2個單位長度/秒,點B速度為1個單位長度/秒,幾秒后,點A追上點B;
(3)在(2)的條件下,若運動時間為t秒,運動過程中,當A,B兩點到原點O的距離相等時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AC⊥BD,AB=AD,要使四邊形ABCD是菱形,只需添加一個條件,這個條件可以是_____(只要填寫一種情況).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的△ABC和△DEF重疊在一起,固定△ABC,將△DEF進行如下變換:
(1)如圖1,△DEF沿直線CB向右平移(即點F在線段CB上移動),連接AF、AD、BD,請直接寫出S△ABC與S四邊形AFBD的關(guān)系;
(2)如圖2,當點F平移到線段BC的中點時,四邊形AFBD是什么特殊四邊形?請給出證明;
(3)當點F平移到線段BC的中點時,若四邊形AFBD為正方形,猜想△ABC應滿足什么條件?請直接寫出結(jié)論:在此條件下,將△DEF沿DF折疊,點E落在FA的延長線上的點G處,連接CG,請在圖3位置畫出圖形,并求出sin∠CGF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:
與標準質(zhì)量的差值 | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質(zhì)量比標準質(zhì)量多還是少?多或少幾克?
(2)若每袋標準質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,CE交AB于點F,若∠E=20°,∠C=45°,則∠A的度數(shù)為( 。
A. 5° B. 15° C. 25° D. 35°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com