【題目】如圖,拋物線y=ax2+bx+4與x軸交于點A(﹣1,0)、B(3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,D為拋物線對稱軸上一動點,求D運動到什么位置時△DAC的周長最。
(3)如圖2,點E在第一象限拋物線上,AE與BC交于點F,若AF:FE=2:1,求E點坐標;
(4)點M、N同時從B點出發(fā),分別沿BA、BC方向運動,它們的運動速度都是1個單位/秒,當點M運動到點A時,點N停止運動,則當點N停止運動后,在x軸上是否存在點P,使得△PBN是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
【答案】(1)(2)(3)點P的坐標P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0).
【解析】
(1)直接待定系數(shù)法代入求解即可 (2)找到D點在對稱軸時是△DAC周長最小的點,先求出直線BC,然后D點橫坐標是1,直接代入直線BC求出縱坐標即可 (3)作EH∥AB交BC于H,則∠FAB=∠FEH,∠FBA=∠FHE,易證△ABF∽△EHF,得,得EH=2,設(shè)E(x,),則H(x﹣2,),yE=yH,解出方程x=1或x=2,得到E點坐標 (4)△PBN是等腰三角形,分成三種情況,①BP=BC時,利用等腰三角性質(zhì)直接得到P1(﹣1,0)或P2(7,0),②當NB=NP時,作NH⊥x軸,易得△NHB∽△COB,利用比例式得到NH、 BH從而得到 PH=BH,BP,進而得到OP,即得到P點坐標,③當PN=PB時,取NB中點K,作KP⊥BN,交x軸于點P,易得△NOB∽△PKB,利用比例式求出PB,進而得到OP,即求出P點坐標
解:(1)將A(﹣1,0)、B(3,0)代入y=ax2+bx+4,
得
解得a=,b=,
∴拋物線的解析式;
(2)
∴拋物線對稱軸為直線x=1,
∴D的橫坐標為1,
由(1)可得C(0,4),
∵B(3,0),
∴直線BC:
∵DA=DB,
△DAC的周長=AC+CD+AD=AC+CD+BD,
連接BC,與對稱軸交于點D,
此時CD+BD最小,
∵AC為定值,
∴此時△DAC的周長,
當x=1時,y=﹣×1+4=,
∴D(1,);
(3)作EH∥AB交BC于H,則∠FAB=∠FEH,∠FBA=∠FHE,
∴△ABF∽△EHF,
∵AF:FE=2:1,
∴,
∵AB=4,
∴EH=2,
設(shè)E(x,),則H(x﹣2,)
∵EH∥AB,
∴yE=yH,
∴=
解得x=1或x=2,
y=或4,
∴E(1,)或(2,4);
(4)∵A(﹣1,0)、B(3,0),C(0,4)
∴AB=4,OC=4,
點M運動到點A時,BM=AB=4,
∴BN=4,
∵△PBN是等腰三角形,
①BP=BC時,
若P在點B左側(cè),OP=PB﹣OB=4﹣3=1,
∴P1(﹣1,0),
若P在點B右側(cè),OP=OB+BP=4+3=7,
∴P2(7,0);
②當NB=NP時,作NH⊥x軸,
△NHB∽△COB,
∴
∴NH=OC==,
BH=BC=,
∴PH=BH=,
BP=,
∴OP=BP﹣OB=,
∴P3(﹣,0);
③當PN=PB時,
取NB中點K,作KP⊥BN,交x軸于點P,
∴△NOB∽△PKB,
∴
∴PB=,
∴OP=OB﹣PB=3﹣=
P4(,0)
綜上,當△PBN是等腰三角形時,點P的坐標P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,AB=AC,點E、F分別在邊AB、BC上,且AE=BF,CE與AF相交于點G.
(1)求證:∠FGC=∠B;
(2)延長CE與DA的延長線交于點H,求證:BECH=AFAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點E為AD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當△ECF為直角三角形時,AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架無人機在距離地面高度為13.3米的點A處,測得地面點M的俯角為53°,這架無人機沿仰角為35°的方向飛行了55米到達點B,恰好在地面點N的正上方,M、N在同一水平線上求出M、N兩點之間的距離.(結(jié)果精確到1米)
(參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了提高學(xué)生學(xué)科能力,決定開設(shè)以下校本課程:A.文學(xué)院;B.小小數(shù)學(xué)家;C.小小外交家;D、未來科學(xué)家.為了了解學(xué)生最喜歡哪一項校本課程,學(xué)校隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次統(tǒng)計共抽查了 名學(xué)生;在扇形統(tǒng)計圖中,表示C類別的扇形圓心角度數(shù)為 .
(2)補全條形統(tǒng)計圖;
(3)一班想從表達能力很強的甲、乙、丙、丁四名同學(xué)中,任選2名參加小小外交家小組,請用列表或畫樹狀圖的方法求恰好同時選中甲、乙兩名同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點,過點B作⊙O的切線,與CA的延長線相交于點D,E是BD的中點,延長AE與CB的延長線相交于點F.
(1)求證:AF是⊙O的切線;
(2)若BE=5,BF=12,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知已知拋物線經(jīng)過原點O和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D,直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.
(1)求m的值及該拋物線的解析式
(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標.
(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設(shè)點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形?若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市九年級學(xué)生身體素質(zhì)情況,從全市九年級學(xué)生中隨機抽取了部分學(xué)生進行了一次體育考試科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 °,把圖2條形統(tǒng)計圖補充完整;
(3)全市九年級有學(xué)生6200名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進行調(diào)查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為________, =________%, =________%,“常!睂(yīng)扇形的圓心角的度數(shù)為__________;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有3200名學(xué)生,請你估計其中“總是”對錯題進行整理、分析、改正的
學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com