如圖,點O是△ABC所在平面內(nèi)一動點,連接OB、OC,并把AB、OB、OC、CA的中點D、E、F、G順次連接起來,若四邊形DEFG為正方形,則點O所在的位置滿足的條件是_______________________.
OA=BC且OA⊥BC.

試題分析:OA=BC且OA⊥BC.理由如下:
∵D、G分別是AB、AC的中點,
∴DG是△ABC的中位線;
∴DG∥BC,且DG=BC;
同理可證:EF∥BC,且EF=BC;
∴DG∥EF,且DG=EF;
∴四邊形DEFG是平行四邊形;
連接OA.
∵把AB、OB、OC、AC的中點D、E、F、G依次連接形成四邊形DEFG.
∴DE∥OA∥GF,EF∥BC,
∵O點在BC邊的高上,
∴AO⊥BC,
∴AO⊥EF,
∵DE∥OA,
∴DE⊥EF,
∴四邊形DEFG是矩形.
∵OA=BC,DE=AO,DG=BC,
∴DE=DG,
∴矩形DEFG是正方形.
故答案是OA=BC且OA⊥BC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,點B、F、C、E在同一直線上,BF=CE,AB⊥BE,DE⊥BE,垂足分別為B、E,聯(lián)結(jié)AC、DF,∠A=∠D.
求證:AB=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面上有一半徑為1 cm的圓定點A,OA="4" cm.以點A為旋轉(zhuǎn)中心,使圓O分別順時針旋轉(zhuǎn)90°,逆時針旋轉(zhuǎn)60°,得到圓B和圓C,作出這兩個圓.
(1)試問圓B或圓C的圓心與圓O的圓心O的距離是多少?
(2)試問圓B和圓C的圓心的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC與△BAD中,AD與BC相交于點E,∠C=∠D,EA=EB.
求證:BC=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把一條12個單位長度的線段分成三條線段,其中一條線段長為4個單位長度,另兩條線段長都是單位長度的整數(shù)倍.
(1)不同分法得到的三條線段能組成多少個不全等的三角形?用尺規(guī)作出這些三角形(用給定的單位長度,不寫作法,保留作圖痕跡);
(2)求出(1)中所作三角形外接圓的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列長度的三條線段,能組成等腰三角形的是(   )
A.1,1,2B.2,2,5C.3,3,5D.3,4,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如下圖,將的各邊都延長一倍至、、,連接這些點,得到一個新的三角形,若的面積為3,則的面積是             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B順時針旋轉(zhuǎn)得到△BCD,若點B的坐標(biāo)為(2,0),則點C的坐標(biāo)為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形的兩條對角線長分別為8和10,則其中每一邊長的取值范圍是           。

查看答案和解析>>

同步練習(xí)冊答案