【題目】完成下面推理過程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年“雙11”購物節(jié)的快遞量暴增,某快遞公司要在街道旁設(shè)立一個(gè)派送還點(diǎn),向A,B兩居民區(qū)投送快遞,派送點(diǎn)應(yīng)該設(shè)在什么地方,才能使它到A,B的距離之和最短?快遞員根據(jù)實(shí)際情況,以街道為x軸,建立了如圖所示的平面直角坐標(biāo)系,測(cè)得坐標(biāo)A(﹣2,2)、B(6,4),則派送點(diǎn)的坐標(biāo)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)D在y軸上,以D為圓心,作⊙D交x軸于點(diǎn)E、F,交y軸于點(diǎn)B、G,點(diǎn)A在上,連接AB交x軸于點(diǎn)H,連接 AF并延長到點(diǎn)C,使∠FBC=∠A.
(1)判斷直線BC與⊙D的位置關(guān)系,并說明理由;
(2)求證:BE2=BH·AB;
(3) 若點(diǎn)E坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,-2),AB=8,求F與A兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請(qǐng)判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題:
(1)請(qǐng)直接寫出a、b、c的值:a= , b= , c= .
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒2個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和6個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.
請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(2x﹣1)(1﹣2x)結(jié)果正確的是( )
A.4x2﹣1
B.1﹣4x2
C.﹣4x2+4x﹣1
D.4x2﹣4x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)有三層,第一層有商品(m+n)2種,第二層有商品m(m+n)種,第三層有商品n(m+n)種,求這個(gè)商場(chǎng)共有多少種商品.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com