如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)可通過構(gòu)建直角三角形來(lái)求解.過D作DE⊥AB于E,過C作CF⊥AB于F,很顯然AE=BF,四邊形DQPE和QCFP是矩形,那么就能用等腰梯形的上下底的差求出AE,BF的長(zhǎng),然后可用時(shí)間表示出CQ,DQ,AP的長(zhǎng),由于DQ=EP,因此可用AP=AE+EP求出時(shí)間的值.
(2)先要求出梯形的面積,那么求出高就是關(guān)鍵,在直角三角形AED中,可用勾股定理求出高,也就求出了四邊形QPBC的面積,由于Q在CD和DA上運(yùn)動(dòng),因此要分Q在CD上,和Q在AD上兩種情況進(jìn)行討論.
當(dāng)Q在CD上時(shí),可用時(shí)間t表示出CQ和BP的長(zhǎng),然后根據(jù)計(jì)算出的高和四邊形CQPB的面積,來(lái)求出時(shí)間t的值,要注意當(dāng)Q在CD上時(shí),t應(yīng)該在0-2秒內(nèi),可用這個(gè)取值范圍來(lái)判定求出的值是否符合題意.
當(dāng)Q在AD上時(shí),四邊形QPBC是個(gè)不規(guī)則的四邊形,那么根據(jù)他的面積是梯形的一半,那么四邊形QPBC的面積就應(yīng)該等于三角形CDQ和AQP的面積和,那么就需要作出這兩個(gè)三角形的高以便求出面積,過點(diǎn)Q作HG⊥AB于G,交CD的延長(zhǎng)線于H.求出QH和QG就是解題的關(guān)鍵.
可以用時(shí)間t先表示出CQ,AP,然后根據(jù)CD+DQ=CQ進(jìn)而表示出QD和AQ,那么我們可在直角三角形AQG中根據(jù)∠A的度數(shù)求出QG,然后根據(jù)求出的梯形的高得出QH的值,這樣就能用含t的式子表示出三角形QDC和AQP的面積,也就是四邊形QPBC的面積,根據(jù)求出的四邊形的面積可得出t的值,要注意Q在AD上時(shí),取值范圍是2-4秒,因此可根據(jù)這個(gè)取值范圍判定求出的t是否符合題意.
解答:精英家教網(wǎng)解:(1)過D作DE⊥AB于E,過C作CF⊥AB于F,如圖1.
∵四邊形ABCD是等腰梯形,
∴四邊形CDEF是矩形,
∴DE=CF.
又∵AD=BC,
∴Rt△ADE≌Rt△BCF,AE=BF.
又CD=2cm,AB=8cm,
∴EF=CD=2cm,
AE=BF=
1
2
(8-2)=3(cm).
若四邊形APQD是直角梯形,則四邊形DEPQ為矩形.
∵CQ=t,
∴DQ=EP=2-t,
∵AP=AE+EP,
∴2t=3+2-t,
∴t=
5
3


(2)在Rt△ADE中,DE=
36-9
=3
3
(cm),精英家教網(wǎng)
S梯形ABCD=
1
2
(8+2)×3
3
=15
3
(cm2).
當(dāng)S四邊形PBCQ=
1
2
S梯形ABCD時(shí),
①如圖2,若點(diǎn)Q在CD上,即0≤t<2,
則CQ=t,BP=8-2t.
S四邊形PBCQ=
1
2
(t+8-2t)×3
3
=
15
3
2
,
解之得t=3(舍去).精英家教網(wǎng)
②如圖3,若點(diǎn)Q在AD上,即2≤t<4.
過點(diǎn)Q作HG⊥AB于G,交CD的延長(zhǎng)線于H.
由圖1知,sin∠ADE=AE:AD=
1
2
,
∴∠ADE=30°,
則∠A=60度.在Rt△AQG中,AQ=8-t,QG=AQ•sin60°=
3
(8-t)
2
,
在Rt△QDH中,∠QDH=60°,DQ=t-2,QH=DQ•sin60°=
3
(t-2)
2

由題意知,S四邊形PBCQ=S△APQ+S△CDQ=
1
2
×2t×
3
(8-t)
2
+
1
2
×2×
3
(t-2)
2
=
15
3
2
,
即t2-9t+17=0,解之得t1=
9+
13
2
(不合題意,舍去),t2=
9-
13
2

答:存在t=
9-
13
2
,使四邊形PBCQ的面積是梯形ABCD面積的一半.
點(diǎn)評(píng):本題要根據(jù)Q點(diǎn)的位置來(lái)判斷四邊形CQPB的形狀,進(jìn)而選擇合適的解題方法.本題中通過輔助線作出梯形的高,構(gòu)建出直角三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案