如圖1,拋物線軸交于兩點,與軸交于點,連結(jié)AC,若

1.求拋物線的解析式

2.拋物線對稱軸上有一動點P,當時,求出點的坐標;

3.如圖2所示,連結(jié)是線段上(不與、重合)的一個動點.過點作直線,交拋物線于點,連結(jié)、,設(shè)點的橫坐標為.當t為何值時,的面積最大?最大面積為多少?

 

【答案】

 

1.

2.點的坐標為(,)或(,

3.見解析

【解析】解:(1)∵拋物線過點. ∴

又∵,即………………………1分

又∵點A在拋物線上.

∴0=12+b×1+2,b=-3

∴拋物線的解析式為:…………………2分

(2)過點作對稱軸的垂線,垂足為,

.

………………………3分

,即,………………………..4分

解得∴點的坐標為()或(). ………………5分

(備注:可以用勾股定理或相似解答)

(3)易得直線的解析式為,

∵點是直線和線段的交點,

點的坐標為的坐標為………………6分

………………………….7分

……..........................8分

∴當時,最大值為1. …………………………………………9分

(備注:如果沒有考慮的取值范圍,可以不扣分)

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖9,拋物線軸交于A、B兩點,與軸交于點C(0,).

(1)求拋物線的對稱軸及的值;

(2)拋物線的對稱軸上存在一點P,使得的值最小,求此時點P的坐標;

(3)點M是拋物線上的一動點,且在第三象限.

①當M點運動到何處時,△AMB的面積最大?求出△AMB的最大面積及此時點M的坐標;

②當M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖9,拋物線軸交于A、B兩點,與軸交于點C(0,).
(1)求拋物線的對稱軸及的值;
(2)拋物線的對稱軸上存在一點P,使得的值最小,求此時點P的坐標;
(3)點M是拋物線上的一動點,且在第三象限.
①當M點運動到何處時,△AMB的面積最大?求出△AMB的最大面積及此時點M的坐標;
②當M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖9,拋物線軸交于、兩點(點在點的左側(cè)),拋物線上另有一點在第一象限,滿足∠為直角,且恰使△∽△.

(1)(3分)求線段的長.
(2)(3分)求該拋物線的函數(shù)關(guān)系式.
(3)(4分)在軸上是否存在點,使△為等腰三角形?若存在,求出所有符合條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年河北省石家莊市九年級第一次模擬考試數(shù)學 題型:解答題

如圖9,拋物線軸交于A、B兩點,與軸交于點C(0,).

(1)求拋物線的對稱軸及的值;

(2)拋物線的對稱軸上存在一點P,使得的值最小,求此時點P的坐標;

(3)點M是拋物線上的一動點,且在第三象限.

①當M點運動到何處時,△AMB的面積最大?求出△AMB的最大面積及此時點M的坐標;

②當M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年江蘇省常州市考模擬數(shù)學卷 題型:解答題

 

如圖9,拋物線軸交于、兩點(點在點的左側(cè)),拋物線上另有一點在第一象限,滿足∠為直角,且恰使△∽△.

(1)(3分)求線段的長.

(2)(3分)求該拋物線的函數(shù)關(guān)系式.

(3)(4分)在軸上是否存在點,使△為等腰三角形?若存在,求出所有符合條件的點的坐標;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案