【題目】四邊形中,對角線、相交于點,下列條件不能判定這個四邊形是平行四邊形的是(  )

A. ABDC,ADBC B. AO=CO,BO=DO

C. ABDC,AD=BC D. AB=DC,AD=BC

【答案】C

【解析】根據(jù)平行四邊形判定定理進行判斷.

A、由“ABDC,ADBC可知,四邊形ABCD的兩組對邊互相平行,則該四邊形是平行四邊形.故本選項不符合題意;

B、由“AO=CO,BO=DO”可知,四邊形ABCD的兩條對角線互相平分,則該四邊形是平行四邊形.故本選項不符合題意;

C、由“ABDC,AD=BC”可知,四邊形ABCD的一組對邊平行,另一組對邊相等,據(jù)此不能判定該四邊形是平行四邊形.故本選項符合題意;

D、由“AB=DC,AD=BC”可知,四邊形ABCD的兩組對邊相等,則該四邊形是平行四邊形.故本選項不符合題意;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在研究性學(xué)習(xí)活動中,對自己家所在的小區(qū)進行調(diào)查后發(fā)現(xiàn),小區(qū)汽車入口寬AB為3.2m,在入口的一側(cè)安裝了停止桿CD,其中AE為支架.當(dāng)停止桿仰起并與地面成60°角時,停止桿的端點C恰好與地面接觸.此時CA為0.7m.在此狀態(tài)下,若一輛貨車高3m,寬2.5m,入口兩側(cè)不能通車,那么這輛貨車在不碰桿的情況下,能從入口內(nèi)通過嗎?請你通過估算說明.(參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標(biāo)是(
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請將表格補充完整;

(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置;

(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:像、、兩個含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個代數(shù)式互為有理化因式例如,、等都是互為有理化因式在進行二次根式計算時,利用有理化因式,可以化去分母中的根號.

例如;;

解答下列問題:

(1)________互為有理化因式,將分母有理化得________;

(2)計算:

(3)己知有理數(shù)a、b滿足,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1)

(2)

(3)

(4)

(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,交AD于點E,AB=3cm,ED=cm,則平行四邊形ABCD的周長是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列解題過程,然后回答問題:

解方程:

解:①當(dāng)≥0時,原方程可化為: ,解得;

②當(dāng)<0時,原方程可化為: ,解得;

所以原方程的解是

(1)解方程:

(2)探究:當(dāng)為何值時,方程 ①無解;②只有一個解;③有兩個解。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=50°,BD平分∠ABC,過DDEABBC于點E,若點FAB上,且滿足DF=DE,則∠DFB的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊答案