【題目】如圖,在ABC中,∠C=90,BD是ABC的一條角一平分線,點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形,
(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長
【答案】(1)證明見解析;(2)2.
【解析】
(1)考察角平分線定理的性質(zhì),及直角三角形全等的判斷方法,“HL”;(2)利用全等得到線段AM=BE,AM=AF,利用正方形OECF,得到四邊都相等,從而利用OE與BE、AF及AB的關(guān)系求出OE的長
解:(1)過點O作OM⊥AB于點M
∵正方形OECF
∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F
∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E
∴OM=OE=OF
∵OM⊥AB于M, OE⊥BC于E
∴∠AMO=90°,∠AFO=90°
∵
∴Rt△AMO≌Rt△AFO
∴∠MA0=∠FAO
∴點O在∠BAC的平分線上
(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12
∴AB=13
∴BE=BM,AM=AF
又BE=BC-CE,AF=AC-CF,而CE=CF=OE
∴BE=12-OE,AF=5-OE
∴BM+AM=AB
即BE+AF=13
12-OE+5-OE=13
解得OE=2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了鼓勵居民節(jié)約用水,決定實行兩級收費制,即每月用水量不超過14噸(含14噸)時,每噸按政府補貼優(yōu)惠價收費;每月超過14噸時,超過部分每噸按市場調(diào)節(jié)價收費,小英家1月份用水20噸,交水費29元;2月份用水18噸,交水費24元.
(1)求每噸水的政府補貼優(yōu)惠價和市場調(diào)節(jié)價分別是多少?
(2)小英家3月份用水24噸,她家應(yīng)交水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=45°,P為∠MON內(nèi)一點,A為OM上一點,B為ON上一點,當(dāng)PAB的周長取最小值時,∠APB的度數(shù)為( )
A.80°B.90°C.110°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積為( )
A. 6B. 12C. 4D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,若∠DAB的角平分線AE交CD于E,連接BE,且BE邊平分∠ABC,則以下命題不正確的個數(shù)是①BC+AD=AB;②E為CD中點;③∠AEB=90°;④S△ABE=S四邊形ABCD;⑤BC=CE.( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請用簡潔的語言表達(dá)BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點,拋物線過點B,C.
(1)求b、c的值;
(2)若點D是拋物線在x軸下方圖象上的動點,過點D作x軸的垂線,與直線BC相交于點E.當(dāng)線段DE的長度最大時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設(shè)排球的個數(shù)為m,總費用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點O是線段AD的中點,分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點E,連接BC.求∠AEB的大;
(2)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com