【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)______.

2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的人數(shù)約為多少戶?

4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調(diào)查他們對精準扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.

【答案】160;(254°;(31500戶;(4)見解析,.

【解析】

1)用B級人數(shù)除以B級所占百分比即可得答案;(2)用A級人數(shù)除以總人數(shù)可求出A級所占百分比,乘以360°即可得∠α的度數(shù),總人數(shù)減去A級、B級、D級的人數(shù)即可得C級的人數(shù),補全條形統(tǒng)計圖即可;(3)用10000乘以A級人數(shù)所占百分比即可得答案;(4)畫出樹狀圖,得出所有可能出現(xiàn)的結果及選中的結果,根據(jù)概率公式即可得答案.

121÷35%=60(戶)

故答案為60

29÷60×360°=54°,

C級戶數(shù)為:60-9-21-9=21(戶),

補全條形統(tǒng)計圖如所示:

故答案為:54°

3(戶)

4)由題可列如下樹狀圖:

由樹狀圖可知,所有可能出現(xiàn)的結果共有20種,選中的結果有8

P(選中=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線y軸交于點B,與x軸交于點A,C(點A在點C的左側),A-1,0),C4,0),連接ABBC,點y軸負半軸上的一點,連接AG并延長交拋物線于點E,點D為線段AE上的一個動點,過點Dy軸的平行線交拋物線于點F,與線段BC交于點N

1)求拋物線的表達式及直線BC的表達式;

2)在點D運動的過程中,當FN的值最大時,在線段BC上是否存在一點H,使得FNHABC相似,如果存在,求出此時H點的坐標;

3)當DF=4時,連接DC,四邊形ABCD先向上平移一定單位長度后,使點D落在x軸上,然后沿x軸向左平移n1n4)個單位長度,用含n的表達式表示平移后的四邊形與原四邊形重疊部分的面積S(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,其對稱軸為x=﹣1,且過點(﹣30).下列說法:①abc0;②2a﹣b=0③4a+2b+c0若(﹣5,y1),(y2)是拋物線上兩點,則

y1y2.其中說法正確的是( )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強學生的疫情防控意識,響應“停課不停學”號召,某校組織了一次“疫情防控知識”專題網(wǎng)上學習,并進行了一次全校2500名學生都參加的網(wǎng)上測試.閱卷后,教務處隨機抽取了100份答卷進行分析統(tǒng)計,發(fā)現(xiàn)考試成績(分)的最低分為51分,最高分為滿分100分,并繪制了如下不完整的統(tǒng)計圖表.請根據(jù)圖表提供的信息,解答下列問題:

分數(shù)段(分)

頻數(shù)(人)

頻率

0.1

18

0.18

35

0.35

12

0.12

合計

100

1

1)填空:________,________,________

2)將頻數(shù)分布直方圖補充完整;

3)該校對成績?yōu)?/span>的學生進行獎勵,按成績從高分到低分設一、二、三等獎,并且一、二、三等獎的人數(shù)比例為,請你估算全校獲得二等獎的學生人數(shù);

4)結合調(diào)查的情況,為了提高疫情防控意識,請你給學校提一條合理性建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016浙江省衢州市)如圖,正方形ABCD的頂點A,B在函數(shù)x0)的圖象上,點C,D分別在x軸,y軸的正半軸上,當k的值改變時,正方形ABCD的大小也隨之改變.

1)當k=2時,正方形ABCD′的邊長等于____

2)當變化的正方形ABCD與(1)中的正方形ABCD′有重疊部分時,k的取值范圍是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O的半徑為3A為圓內(nèi)一定點,AO1,P為圓上一動點,以AP為邊作等腰△APQ,APPQ,∠APQ120°,則OQ的最大值為( 。

A.1+3B.1+2C.3+D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2txt+1(是常數(shù)).

1)求此函數(shù)的頂點坐標.(用含t的代數(shù)式表示)

2)當x2時,yx的增大而減小,求t的取值范圍.

3)當0x1時,該函數(shù)有最大值4,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,y=ax2+bx2的圖象過A10),B(-2,0),與y軸交于點C

1)求拋物線關系式及頂點M的坐標;

2)若N為線段BM上一點,過Nx軸的垂線,垂足為Q,當N在線段BM上運動(N不與點B、點M重合),設NQ的長為t,四邊形NQAC的面積為S,求St的關系式并求出S的最大值;

3)在拋物線的對稱軸上是否存在點P,使PAC為直角三角形?若存在,請直接寫出所有符合條件P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)yx2+bx+c的圖象過A(5,0)B(0,)兩點,射線CE繞點C(0,5)旋轉(zhuǎn),交拋物線于D,E兩點,連接AC

1)求二次函數(shù)yx2+bx+c的表達式;

2)連接OEAE,當△CEO是以CO為底的等腰三角形時,求點E的坐標和△ACE的面積;

3)如圖2,射線CE旋轉(zhuǎn)時,取DE的中點F,以DF為邊作正方形DFMN.當點E和點A重合時,正方形DFMN的頂點M恰好落在x軸上.

求點M的坐標;

當點E和點A重合時,將正方形DFMN沿射線CE方向以每秒個單位長度平移.設運動時間為t秒.直接寫出正方形DFMN落在x軸下方的面積S與時間t(0t4)的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案