【題目】下列調(diào)查中最適合普遍調(diào)查的是( )
A.調(diào)查某品牌燈泡的使用壽命B.調(diào)查振興區(qū)居民網(wǎng)上購物情況
C.調(diào)查錦江山上各種鳥的總數(shù)量D.調(diào)查我國大型客機(jī)C919的零件質(zhì)量
【答案】D
【解析】
由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.
A. 調(diào)查某品牌燈泡的使用壽命,調(diào)查具有破壞性,故適合抽查,選項錯誤;
B. 調(diào)查振興區(qū)居民網(wǎng)上購物情況,數(shù)量較大,不易全面調(diào)查,故選項錯誤;
C. 調(diào)查錦江山上各種鳥的總數(shù)量,數(shù)量太大,適合抽查,故選項錯誤.
D. 調(diào)查我國大型客機(jī)C919的零件質(zhì)量,事關(guān)重大,必須進(jìn)行全面調(diào)查,故選項正確;
故選D
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,作射線AB交邊BC于點D,若CD=4,AB=15,則△ABD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知格點三角形ABC(三角形的三個頂點都在小正方形的頂點上).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)寫出點A和對稱點A1的坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,D為AB中點,設(shè)點P在線段BC上以3cm/秒的速度由B點向C點運動,點Q在線段CA上由C點向A點運動.
(1)若Q點運動的速度與P點相同,且點P,Q同時出發(fā),經(jīng)過1秒鐘后△BPD與△CQP是否全等,并說明理由;
(2)若點P,Q同時出發(fā),但運動的速度不相同,當(dāng)Q點的運動速度為多少時,能在運動過程中有△BPD與△CQP全等?
(3)若點Q以(2)中的速度從點C出發(fā),點P以原來的速度從點B同時出發(fā),都是逆時針沿△ABC的三邊上運動,經(jīng)過多少時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,D.E為圓上兩點,C為圓外一點,且∠E+∠C=90°.
(1)求證:BC為⊙O的切線.
(2)若sinA=,BC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx-3與x軸、y軸分別交于點B,C, = .
(1)求點B坐標(biāo)和k值;
(2)若點A(x,y)是直線y=kx-3上在第一象限內(nèi)的一個動點,當(dāng)點A在運動過程中,試寫出△AOB的面積S與x的函數(shù)關(guān)系式(不要求寫自變量范圍);并進(jìn)一步求出點A的坐標(biāo)為多少時,△AOB的面積為 ?
(3)在上述條件下,x軸上是否存在點P,使△AOP為等腰三角形?若存在,請寫出滿足條件的所有P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓的半徑R、r分別為方程x2-5x+6=0的兩根,兩圓的圓心距為1,兩圓的位置關(guān)系是( )
A.外離
B.內(nèi)切
C.相交
D.外切
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩支儀仗隊隊員的身高(單位:cm)如下:
甲隊:178,177,179,178,177,178,177,179,178,179;
乙隊:178,179,176,178,180,178,176,178,177,180;
(1)將下表填完整:
身高 | 176 | 177 | 178 | 179 | 180 |
甲隊(人數(shù)) | 3 | 4 | |||
乙隊(人數(shù)) | 2 | 1 | 1 |
(2)甲隊隊員身高的平均數(shù)為cm,乙隊隊員身高的平均數(shù)為cm;
(3)你認(rèn)為哪支儀仗隊更為整齊?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.
(1)求證:EF是⊙O的切線;
(2)求證:=4BPQP.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com