如圖,直線(b>0)與雙曲線(>0)交于A、B兩點,連接OA、OB, AM⊥軸于M,BN⊥X軸于N;有以下結(jié)論:①OA =OB;②△AOM≌△BON;③若∠AOB=45°,則S△AOB=k;④AB=時,ON=BN=1,其中結(jié)論正確的是( )
A. ①②③④ B. ①②③ C. ①② D. ①②④
A
解析試題分析:①②設(shè)A(x1,y1),B(x2,y2),聯(lián)立與,得x2-bx+k=0,則x1•x2=k,又x1•y1=k,比較可知x2=y1,同理可得x1=y2,即ON=OM,AM=BN,可證結(jié)論;
③作OH⊥AB,垂足為H,根據(jù)對稱性可證△OAM≌△OAH≌△OBH≌△OBN,可證S△AOB=k;
④延長MA,NB交于G點,可證△ABG為等腰直角三角形,當(dāng)AB=時,GA=GB=1,則ON-BN=GN-BN=GB=1.
A(x1,y1),B(x2,y2),代入中,得x1•y1=x2•y2=k,
聯(lián)立與,得x2-bx+k=0,
則x1•x2=k,又x1•y1=k,
∴x2=y1,
同理x2•y2=k,
可得x1=y2,
∴ON=OM,AM=BN,
∴①OA=OB,②△AOM≌△BON,正確;
③作OH⊥AB,垂足為H,
∵OA=OB,∠AOB=45°,
∵②△AOM≌△BON,正確;
∴∠MOA=∠BON=22.5°,
∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S△AOB=S△AOH+S△BOH=S△AOM+S△BON=k+k=k,正確;
④延長MA,NB交于G點
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG為等腰直角三角形,
當(dāng)AB=時,GA=GB=1,
∴ON-BN=GN-BN=GB=1,正確.
正確的結(jié)論有①②③④.
故選A.
考點:反比例函數(shù)的綜合運用
點評:解題的關(guān)鍵是明確反比例函數(shù)圖象上點的坐標(biāo)特點,反比例函數(shù)圖象的對稱性.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
4 |
x |
A、8 | ||
B、6 | ||
C、4 | ||
D、6
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com