【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,DE=3BE,點(diǎn)P,Q分別在BD,AD 上,則AP+PQ的最小值為:
A. 2 B. C. 2 D. 3
【答案】D
【解析】試題解析:設(shè)BE=x,則DE=3x,∵四邊形ABCD為矩形,且AE⊥BD,∴△ABE∽△DAE,∴=BEDE,即,∴AE=x,在Rt△ADE中,由勾股定理可得,即,解得x=,∴AE=3,DE=,
如圖,設(shè)A點(diǎn)關(guān)于BD的對稱點(diǎn)為A′,連接A′D,PA′,則A′A=2AE=6=AD,AD=A′D=6,
∴△AA′D是等邊三角形,∵PA=PA′,∴當(dāng)A′、P、Q三點(diǎn)在一條線上時,A′P+PQ最小,又垂線段最短可知當(dāng)PQ⊥AD時,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=,故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=x2+bx+c經(jīng)過點(diǎn)A,B.
(1)求拋物線解析式;
(2)點(diǎn)C(m,0)在線段OA上(點(diǎn)C不與A,O點(diǎn)重合),CD⊥OA交AB于點(diǎn)D,交拋物線于點(diǎn)E,若DE=AD,求m的值;
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,在(2)的條件下,是否存在以點(diǎn)D,B,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,E為對角線BD上一個動點(diǎn),以E為直角頂點(diǎn),AE為直角邊作等腰Rt△AEF,A、E、F按逆時針排列.當(dāng)點(diǎn)E從點(diǎn)B運(yùn)動到點(diǎn)D時,點(diǎn)F的運(yùn)動路徑長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)以下四邊形中,是勾股四邊形的為 .(填寫序號即可)
①矩形;②有一個角為直角的任意凸四邊形;③有一個角為60°的菱形.
(2)如圖,將△ABC繞頂點(diǎn)B按順時針方向旋轉(zhuǎn)60°得到△DBE,∠DCB=30°,連接AD,DC,CE.
①求證:△BCE是等邊三角形;
②求證:四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+2與x軸、y軸分別相交于點(diǎn)A、點(diǎn)B,∠BAO=30°,若將△AOB沿直錢CD折疊,使點(diǎn)A與點(diǎn)B重合,折痕CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2;
(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對應(yīng)點(diǎn)分別為A1、A2,請寫出點(diǎn)A1、A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對應(yīng)點(diǎn)分別為P1,P2,請寫出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,如圖所示.
(1)∵ (已知),∴__________________ (______).
(2)∵ (已知),∴__________________(______).
(3)∵_________(已知),∴(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程有兩個不相等的實(shí)數(shù)根.
求實(shí)數(shù)的取值范圍;
是否存在實(shí)數(shù),使方程的兩個實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,每臺售價4000元.為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦.已知甲種電腦每臺進(jìn)價為3500元,乙種電腦每臺進(jìn)價為3000元,公司預(yù)計用不多于5萬元且不少于4.8萬元的資金購進(jìn)這兩種電腦共15臺.
(1)有幾種進(jìn)貨方案?
(2)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現(xiàn)金a元,要使(2)中所有方案獲利相同,a值應(yīng)是多少? 若考慮投入成本最低,則應(yīng)選擇哪種進(jìn)貨方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com