【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足為F.
(1)若AC=10,求四邊形ABCD的面積;
(2)求證:AC平分∠ECF;
(3)求證:CE=2AF.
【答案】(1)解:∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
∵S四邊形ABCD=S△ABC+S△ACD ,
∴;
(2)證明:∵△ACE是等腰直角三角形,
∴∠ACE=∠AEC=45°,
由△ABC≌△ADE得:
∠ACB=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF;
(3)證明:過點A作AG⊥CG,垂足為點G,
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE=2AF.
【解析】(1)求出∠BAC=∠EAD,根據(jù)SAS推出△ABC≌△ADE,推出四邊形ABCD的面積=三角形ACE的面積,即可得出答案;
(2)根據(jù)等腰直角三角形的性質得出∠ACE=∠AEC=45°,△ABC≌△ADE求出∠ACB=∠AEC=45°,推出∠ACB=∠ACE即可;
(3)過點A作AG⊥CG,垂足為點G,求出AF=AG,求出CG=AG=GE,即可得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】某商店第一次用3000元購進某款書包,很快賣完,第二次又用2400元購進該款書包,但這次每個書包的進價是第一次進價的1.2倍,數(shù)量比第一次少了20個.
(1)求第一次每個書包的進價是多少元?
(2)若第二次進貨后按80元/個的價格銷售,恰好銷售完一半時,根據(jù)市場情況,商店決定對剩余的書包全部按同一標準一次性打折銷售,但要求這次的利潤不少于480元,問最低可打幾折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015年我市全年房地產投資約為317億元,這個數(shù)據(jù)用科學記數(shù)法表示為( )
A.317×108
B.3.17×1010
C.3.17×1011
D.3.17×1012
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)9+(﹣ )﹣5﹣(﹣0.25);
(2)﹣45×( +1 ﹣0.6);
(3)(﹣81)÷2 + ÷(﹣16);
(4)﹣32﹣[(﹣5)3+(1﹣0.2× )÷(﹣0.2)].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC紙片中,OA=7,OC=5,D為BC邊上動點,將△OCD沿OD折疊,當點C的對應點落在直線AF上時,記為點E,若此時連接CE,同時OA=OF,,則△OCE面積為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系內,頂點的坐標分別為A(﹣1,6),B(﹣4,2),C(﹣1,2)
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)將△ABC繞點B順時針旋轉90°后得到△A2BC2,請畫出△A2BC2,并求出線段AB在旋轉過程中掃過的圖形面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,FC.
(1)求證:∠FBC=∠FCB;
(2)已知FAFD=12,若AB是△ABC外接圓的直徑,FA=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,把一個長方形紙片沿EF折疊后,點D,C分別落在D′,C′的位置.若∠EFB=65°,則∠AED′等于( 。
A.70°
B.65°
C.50°
D.25°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某果園2014年水果產量為100噸,2016年水果產量為144噸,則該果園水果產量的年平均增長率為_______________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com