如圖,在正方形紙片ABCD中,對角線AC,BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB,AC于點E,G.連接GF.下列結(jié)論:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG.其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

因為∠GAD=45°,由折疊可知:∠ADG=∠ODG=22.5°.故:
①∠AGD=180°-45°-22.5°=112.5°正確;
②設(shè)OG=1,則AG=GF=
2
,
又∠BAG=45°,∠AGE=67.5°,∴∠AEG=67.5°,
∴AE=AG=
2
,則AC=2AO=2(
2
+1),
∴AD=
2(
2
+1)
2
=2+
2
,
tan∠AED=
AD
AE
=
2
+1,錯誤;
③由折疊可知:AG=FG,在直角三角形GOF中,
斜邊GF>直角邊OG,故AG>OG,兩三角形的高相同,
則S△AGD>S△OGD,故錯誤;
④中,AE=EF=FG=AG,故正確;
⑤∵GF=EF,
∴BE=
2
EF=
2
GF=
2
2
OG=2OG,
∴BE=2OG
故正確.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,∠A=70°,將平行四邊形折疊,使點D、C分別落在點F、E處(點F、E都在AB所在的直線上),折痕為MN,則∠AMF等于( 。
A.70°B.40°C.30°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形紙片ABCD中,AB=
6
,BC=
10
.第一次將紙片折疊,使點B與點D重合,折痕與BD交于點O1;O1D的中點為D1,第二次將紙片折疊使點B與點D1重合,折痕與BD交于點O2;設(shè)O2D1的中點為D2,第三次將紙片折疊使點B與點D2重合,折痕與BD交于點O3,….按上述方法折疊,第n次折疊后的折痕與BD交于點On,則BO1=______,BOn=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角三角形紙片ABC中,∠ACB=90°,∠B=30°,將紙片折疊,使AC落在斜邊AB上,落點為E,折痕為AD.連接CE交AD于點F,若AF=2cm,則BD=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖Rt△ABC中,AB=BC=4,D為BC的中點,在AC邊上存在一點E,連接ED,EB,則△BDE周長的最小值為( 。
A.2
5
B.2
3
C.2
5
+2
D.2
3
+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形紙片ABCD中,AB=5cm,BC=10cm,CD上有一點E,ED=2cm,AD上有一點P,PD=3cm,過P作PF⊥AD交BC于F,將紙片折疊,使P點與E點重合,折痕與PF交于Q點,則PQ的長是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列分子結(jié)構(gòu)模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,ABCD是一張正方形紙片,E、F分別為AB、CD的中點,沿過點D的折痕將A角翻折,使得點A落在EF上的A’處(如圖②),折痕交AE于點G,那么∠ADG等于多少度?(寫出計算步驟)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

五角星有______條對稱軸.

查看答案和解析>>

同步練習(xí)冊答案