【題目】如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.
(1)求∠A的度數(shù).
(2)求圖中陰影部分的面積.
【答案】(1) ∠A=30°;(2)
【解析】
(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.
解:(1)連結(jié)OC
∵CD為⊙O的切線
∴OC⊥CD
∴∠OCD=90°
又∵OA=OC
∴∠A=∠ACO
又∵∠A=∠D
∴∠A=∠ACO=∠D
而∠A+∠ACD+∠D=180°﹣90°=90°
∴∠A=30°
(2)由(1)知:∠D=∠A=30°
∴∠COD=60°
又∵CD=2
∴OC=2
∴S陰影=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結(jié)BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,與y=的圖象相交于A(﹣2,m)、B(1,n)兩點,連接OA、OB,給出下列結(jié)論:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正確的結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A′OB′,點A、B旋轉(zhuǎn)后的對應(yīng)點為A′、B′,記旋轉(zhuǎn)角為α.
(I)如圖1,若α=30°,求點B′的坐標;
(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點P,求證:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在1、2、3、4、5這五個數(shù)中,先任意取一個數(shù)a,然后在余下的數(shù)中任意取出一個數(shù)b,組成一個點(a,b).求組成的點(a,b)恰好橫坐標為偶數(shù)且縱坐標為奇數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠B=60°.若點D為AB的中點,P為邊AB上一點,且∠CDP=90°,將∠CDP繞點D順時針方向旋轉(zhuǎn)(0°<<60°),角的兩邊分別與邊AC、BC相交于M、N兩點,則=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com