【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(2,0),(0,1),若將線段AB平移至A1B1,則a+b的值為( )
A.2
B.3
C.4
D.5
【答案】A
【解析】解:由B點(diǎn)平移前后的縱坐標(biāo)分別為1、2,可得B點(diǎn)向上平移了1個單位,由A點(diǎn)平移前后的橫坐標(biāo)分別是為2、3,可得A點(diǎn)向右平移了1個單位,由此得線段AB的平移的過程是:向上平移1個單位,再向右平移1個單位,所以點(diǎn)A、B均按此規(guī)律平移,
由此可得a=0+1=1,b=0+1=1,故a+b=2.
故答案為:A.
根據(jù)點(diǎn)A和點(diǎn)A1的橫坐標(biāo)可知線段AB向右平移了1個單位,根據(jù)點(diǎn)B和點(diǎn)B1的縱坐標(biāo)可知線段向上平移了1個單位,根據(jù)直角坐標(biāo)系中圖形及點(diǎn)的平移規(guī)則:上加下減(點(diǎn)的縱坐標(biāo)變化),左減右加(點(diǎn)的橫坐標(biāo)變化),求出a、b的值,然后求出a+b即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點(diǎn)A(4,0),交y軸于點(diǎn)B,交反比例函數(shù)y=(k≠0)于點(diǎn)P(第一象限),若點(diǎn)P的縱坐標(biāo)為2,且tan∠BAO=1
(1)求出反比例函數(shù)y=(k≠0)的解析式;
(2)過線段AB上一點(diǎn)C作x軸的垂線,交反比例函數(shù)y=(k≠0)于點(diǎn)D,連接PD,當(dāng)△CDP為等腰三角形時,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,點(diǎn)A在第一象限,點(diǎn)B在x軸的正半軸上,△AOB為正三角形,射線OC⊥AB,在OC上依次截取點(diǎn)P1,P2,P3,…,Pn,使OP1=1,P1P2=3,P2P3=5,…,Pn-1Pn=2n-1(n為正整數(shù)),分別過點(diǎn)P1,P2,P3,…,Pn向射線OA作垂線段,垂足分別為點(diǎn)Q1,Q2,Q3,…,Qn,則點(diǎn)Qn的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△PQR是⊙O的內(nèi)接正三角形,四邊形ABCD是⊙O的內(nèi)接正方形,BC∥QR,則∠AOQ= ____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD兩鄰邊分別為3、4,點(diǎn)P是矩形一邊上任意一點(diǎn),則點(diǎn)P到兩條對角線AC、BD的距離之和PE+PF為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像過點(diǎn)A(1,2),B(3,2),C(5,7).若點(diǎn)M(-2, ),N(-1, ),K(8, )也在二次函數(shù)的圖像上,則, , 的從小到大的關(guān)系是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com