【題目】在平面直角坐標系xOy中的點P和圖形M,給出如下的定義:若在圖形M上存在一點Q,使得P、Q兩點間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點.
(1)當⊙O的半徑為2時,
①在點P1( ,0),P2( , ),P3( ,0)中,⊙O的關(guān)聯(lián)點是 .
②點P在直線y=﹣x上,若P為⊙O的關(guān)聯(lián)點,求點P的橫坐標的取值范圍.
(2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+1與x軸、y軸交于點A、B.若線段AB上的所有點都是⊙C的關(guān)聯(lián)點,直接寫出圓心C的橫坐標的取值范圍.
【答案】
(1)[ "解:①P2 , P3
②根據(jù)定義分析,可得當最小y=﹣x上的點P到原點的距離在1到3之間時符合題意,
∴設(shè)P(x,﹣x),當OP=1時,
由距離公式得,OP= =1,
∴x= ,
當OP=3時,OP= =3,
解得:x=± ;
∴點P的橫坐標的取值范圍為:﹣ ≤≤﹣ ,或 ≤x≤ (2)
解:∵直線y=﹣x+1與x軸、y軸交于點A、B,
∴A(1,0),B(0,1),
如圖1,
當圓過點A時,此時,CA=3,
∴C(﹣2,0),
如圖2,
當直線AB與小圓相切時,切點為D,
∴CD=1,
∵直線AB的解析式為y=﹣x+1,
∴直線AB與x軸的夾角=45°,
∴AC= ,
∴C(1﹣ ,0),
∴圓心C的橫坐標的取值范圍為:﹣2≤xC≤1﹣ ;
如圖3,
當圓過點A,則AC=1,∴C(2,0),
如圖4,
當圓過點B,連接BC,此時,BC=3,
∴OC= =2 ,
∴C(2 ,0).
∴圓心C的橫坐標的取值范圍為:2≤xC≤2 ;
綜上所述;圓心C的橫坐標的取值范圍為:﹣2≤xC≤1﹣ 或2≤xC≤2
【解析】(1)①∵點P1( ,0),P2( , ),P3( ,0),
∴OP1= ,OP2=1,OP3= ,
∴P1與⊙O的最小距離為 ,P2與⊙O的最小距離為1,OP3與⊙O的最小距離為 ,
∴⊙O,⊙O的關(guān)聯(lián)點是P2 , P3;
所以答案是:P2 , P3;
【考點精析】通過靈活運用一次函數(shù)的圖象和性質(zhì)和勾股定理的概念,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 是等邊三角形,點P 是三角形內(nèi)的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周長為36,則PD+PE+PF=( )
A.12
B.8
C.4
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三個頂點分別為A(1,2),B(4,2),C(4,4).若反比例函數(shù)y= 在第一象限內(nèi)的圖象與△ABC有交點,則k的取值范圍是( )
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小蘇和小林在如圖1所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如圖2所示.下列敘述正確的是( )
A.兩人從起跑線同時出發(fā),同時到達終點
B.小蘇跑全程的平均速度大于小林跑全程的平均速度
C.小蘇前15s跑過的路程大于小林前15s跑過的路程
D.小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G,
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為7,則GE+FH的最大值為( )
A.10.5
B.7 ﹣3.5
C.11.5
D.7 ﹣3.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com