(2008•莆田)2008年6月1日起全國實行“限塑令”,某班課題組為了解“限塑令”之前本班各同學家中平均每周使用塑料袋的個數(shù),隨機抽取五位同學進行了一次調(diào)查,以調(diào)查數(shù)據(jù)為樣本,繪制出統(tǒng)計表和部分條形圖如下:
家庭 平均每周使用塑料袋的個數(shù) 
 A                     16
 B                     32
 C                     40
 D                     24
 E                     48
解答下列問題:
(1)請把上面未完成的條形圖補充完整;
(2)這組樣本數(shù)據(jù)的中位數(shù)是______;
(3)“限塑令”之后,估計每個家庭使用塑料袋的數(shù)量將減少60%,那么該班同學50個家庭平均每周可減少使用塑料袋共______個.

【答案】分析:(1)頻數(shù)是48,畫圖即可;
(2)根據(jù)中位數(shù)的求算方法可得中位數(shù);
(3)用樣本來估計總體.
解答:解:
(1)如圖:


(2)中位數(shù)是排序后第3個數(shù)據(jù)32;

(3)該班同學50個家庭平均每周可減少使用塑料袋為(48+24+32+40+16)×60%≈19個.
點評:考查了中位數(shù)的確定方法和用樣本估計總體的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年山東省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃石市陽新縣太子中學中考模擬數(shù)學試卷(3)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年貴州省貴陽市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省湛江市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省莆田市中考數(shù)學試卷(解析版) 題型:解答題

(2008•莆田)如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點P為線段BC上一點,過點P作直線l⊥x軸于點F,交拋物線c1點E.
(1)求A、B、C三點的坐標;
(2)當點P在線段BC上運動時,求線段PE長的最大值;
(3)當PE為最大值時,把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應向右平移幾個單位長度可得到拋物線c2?

查看答案和解析>>

同步練習冊答案