將下列多項(xiàng)式分解因式后,結(jié)果含有相同因式的是(  )
①16x5-x;
②(x-1)2-4(x-1)+4;
③(x+1)4-4x(x+1)2+4x2;
④-4x2-1+4x.
A、①②B、③④C、①④D、②③
分析:①首先提取x,進(jìn)而利用平方差公式進(jìn)行分解即可;
②直接利用完全平方公式分解因式即可;
③直接利用完全平方公式分解因式即可;
④首先提取“-”,再利用完全平方公式分解因式即可;
解答:解:①16x5-x
=x(16x4-1)
=x(4x2+1)(4x2-1)
=x(4x2+1)(2x-1)(2x+1);

②(x-1)2-4(x-1)+4
=(x-1-2)2
=(x-3)2;

③(x+1)4-4x(x+1)2+4x2
=[(x+1)-2x]2
=(1-x)2

④-4x2-1+4x=-(4x2+1-4x)=-(2x-1)2
∴結(jié)果含有相同因式的是①④.
故選:C.
點(diǎn)評(píng):此題主要考查了提取公因式法以及公式法分解因式,熟練應(yīng)用公式法分解因式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、將下圖一個(gè)正方形和三個(gè)長(zhǎng)方形拼成一個(gè)大長(zhǎng)方形,請(qǐng)觀(guān)察這四個(gè)圖形的面積與拼成的大長(zhǎng)方形的面積之間的關(guān)系.

(1)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:x2+px+qx+pq=x2+(p+q)x+pq=(
x+p
)×(
x+q

(2)利用(1)的結(jié)論將下列多項(xiàng)式分解因式:
①x2+7x+10
②y2-7y+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、將下列多項(xiàng)式分解因式
(1)56x3yz+14x2y2z-21xy2z2
(2)5(x-y)3+10(y-x)2
(3)9(m+n)2-16(m-n)2
(4)16a4-72a2b2+81b4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•六合區(qū)一模)觀(guān)察猜想
如圖,大長(zhǎng)方形是由四個(gè)小長(zhǎng)方形拼成的,請(qǐng)根據(jù)此圖填空:x2+(p+q)x+pq=x2+px+qx+pq=(
x+p
x+p
)(
x+q
x+q
).
說(shuō)理驗(yàn)證
事實(shí)上,我們也可以用如下方法進(jìn)行變形:
x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=
x(x+p)+q(x+p)
x(x+p)+q(x+p)
=(
x+p
x+p
)(
x+q
x+q
).
于是,我們可以利用上面的方法進(jìn)行多項(xiàng)式的因式分解.
嘗試運(yùn)用
例題  把x2+3x+2分解因式.
解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).
請(qǐng)利用上述方法將下列多項(xiàng)式分解因式:
(1)x2-7x+12;             (2)(y2+y)2+7(y2+y)-18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料解決問(wèn)題:
將下圖一個(gè)正方形和三個(gè)長(zhǎng)方形拼成一個(gè)大長(zhǎng)方形,觀(guān)察這四個(gè)圖形的面積與拼成的大長(zhǎng)方形的面積之間的關(guān)系.

∵用間接法表示大長(zhǎng)方形的面積為:x2+px+qx+pq,用直接法表示面積為:(x+p)(x+q)
∴x2+px+qx+pq=(x+p)(x+q)
∴我們得到了可以進(jìn)行因式分解的公式:x2+(p+q )x+pq=(x+p)(x+q)
(1)運(yùn)用公式將下列多項(xiàng)式分解因式:
①x2+4x-5              ②y2-7y+12
(2)如果二次三項(xiàng)式“a2+□ab+□b2”中的“□”只能填入有理數(shù)1、2、3、4,并且填入后的二次三項(xiàng)式能進(jìn)行因式分解,請(qǐng)你寫(xiě)出所有的二次三項(xiàng)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案