【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點P到原點O的距離為ρ,OPx軸正方向的夾角為α,則用[ρ,α]表示點P的極坐標(biāo),例如:點P的坐標(biāo)為(1,1),則其極坐標(biāo)為[,45°].若點Q的極坐標(biāo)為[4,120°],則點Q的坐標(biāo)為(  )

A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)

【答案】A

【解析】

根據(jù)題意,弄清極坐標(biāo)中第一個數(shù)表示點到原點的距離,第二個數(shù)表示這一點與原點的連線與x軸正方向的夾角,根據(jù)點Q[4,120°],利用特殊角的三角函數(shù)值即可求出點Q的坐標(biāo).

由題目的敘述可知極坐標(biāo)中第一個數(shù)表示點到原點的距離,而第二個數(shù)表示這一點與原點的連線與x軸的夾角,極坐標(biāo)Q[4,120°],這一點在第二象限,則在平面直角坐標(biāo)系中橫坐標(biāo)是:﹣4cos60°=﹣2,縱坐標(biāo)是4sin60°=2,于是極坐標(biāo)Q[4,120°]的坐標(biāo)為(﹣2,2),

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為的若干個小正方形拼成的方格圖,的頂點,均在小正方形的頂點上.

1)在圖中建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,且使點的坐標(biāo)為,并寫出兩點的坐標(biāo);

2)在(1)中建立的平面直角坐標(biāo)系內(nèi)畫出關(guān)于軸對稱的;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )

A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形

2如圖2,CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE求證AF=AE;

3如圖3CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形CEDABC的下方時,AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正方形紙片ABCD對折,使CDAB重合,得到折痕MN后展開,ECN上一點,將△CDE沿DE所在的直線折疊,使得點C落在折痕MN上的點F處,連接AF,BFBD.則下列結(jié)論中:①△ADF是等邊三角形;②tan∠EBF=2-;③SADFS正方形ABCD;④BF2DF·EF.其中正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面圖1、圖2、圖3各正方形中的四個數(shù)之間的變化規(guī)律,按照這樣的變化規(guī)律,圖n中的M應(yīng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

同步練習(xí)冊答案