【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF
(2)當(dāng)AD⊥BD時,請你判斷四邊形BFDE的形狀,并說明理由.
【答案】詳見解析.
【解析】
試題(1)根據(jù)題中已知條件不難得出,AD=BC,∠A=∠C,E、F分別為邊AB、CD的中點(diǎn),那么AE=CF,這樣就具備了全等三角形判定中的SAS,由此可得出△AED≌△CFB.
(2)直角三角形ADB中,DE是斜邊上的中線,因此DE=BE,又由DE=BF,FD∥BE那么可得出四邊形BFDE是個菱形.
試題解析:(1)證明:在平行四邊形ABCD中,∠A=∠C,AD=BC,
∵E、F分別為AB、CD的中點(diǎn),
∴AE=CF.
在△AED和△CFB中,
∴△AED≌△CFB(SAS);
(2)解:若AD⊥BD,則四邊形BFDE是菱形.
證明:∵AD⊥BD,
∴△ABD是直角三角形,且∠ADB=90°.
∵E是AB的中點(diǎn),
∴DE=AB=BE.
∵在ABCD中,E,F分別為邊AB,CD的中點(diǎn),
∴EB∥DF且EB=DF,
∴四邊形BFDE是平行四邊形.
∴四邊形BFDE是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)D,E是邊BC上的兩點(diǎn),且AB=BE,AC=CD.
(1)若∠BAC =90°,求∠DAE的度數(shù);
(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)
(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;
(2)求線段OM的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若 ,半徑OA=3,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-8mx+16m-1(m>0)與x軸的交點(diǎn)分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個不同的交點(diǎn);
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點(diǎn)C(2,0),D(5,0),若拋物線y=mx2-8mx+16m-1(m>0)與線段CD有交點(diǎn),請寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,填空并填寫理由:
(1)因?yàn)?/span>∠1=∠2,所以AD∥BC__________.
(2)因?yàn)?/span>∠A+∠ABC=180°,所以AD∥BC________.
(3)因?yàn)?/span>_____∥________,所以∠C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
(4)因?yàn)?/span>______∥______,所以∠3=∠C(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出三個多項(xiàng)式:x2+x-1,x2+3x+1,x2+x,請你選擇其中兩個進(jìn)行加法運(yùn)算,并把結(jié)果因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com