【題目】圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一下正方形.
(1)請(qǐng)你用兩種不同的方法求圖2中陰影部分的面積?
① ②
(2)觀察圖2,寫出三個(gè)代數(shù)式(m+n)2,(m﹣n)2,4mn之間的等量關(guān)系:
(3)根據(jù)(2)中的等量關(guān)系,解決如下問題:若|a+b﹣7|+|ab﹣6|=0,求(a﹣b)2的值.
【答案】(1)①(m﹣n)2;②(m+n)2﹣4mn;(2)(m﹣n)2=(m+n)2﹣4mn;(3)25.
【解析】
(1)由題意知,陰影部分為一正方形,其邊長正好為.根據(jù)正方形的面積公式即可求出圖中陰影部分的面積,也可以用大正方形的面積減去四個(gè)小長方形的面積由圖形可得:
(2)大正方形的面積減去四個(gè)小長方形的面積正好等于圖中陰影部分的面積.
(3)正好表示大正方形的面積,正好表示陰影部分小正方形的面積,正好表示一個(gè)小長方形的面積.根據(jù)(2)中的等式代入計(jì)算即可.
解:(1)①由圖可知,陰影部分是一個(gè)正方形,邊長為m﹣n
∴陰影部分的面積為:(m﹣n)2;
②由圖形知,陰影部分的面積=大正方形的面積減去四個(gè)小長方形的面積,
∴陰影部分的面積為(m+n)2﹣4mn;
故答案為:①(m﹣n)2;②(m+n)2﹣4mn;
(2)由(1)知(m﹣n)2 = (m+n)2﹣4mn,
故答案為:(m﹣n)2=(m+n)2﹣4mn;
(3)∵|a+b﹣7|+|ab﹣6|=0
∴a+b=7,ab=6,
當(dāng)a+b=7,ab=6時(shí),
(a-b)2
=(a+b)2-4ab
=72-4×6
=49﹣24
=25,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(b>0)與一次函數(shù)y=ax+c的大致圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點(diǎn),當(dāng)∠BPC=30°時(shí),CP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處;
(1)求證:B′E=BF;
(2)設(shè)AE=a,AB=b,BF=c,試猜想a,b,c之間的一種關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個(gè)等腰直角三角形按圖示方式依次翻折,則下列說法正確的個(gè)數(shù)有( )
①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周長等于BC的長.
A. 0個(gè); B. 1個(gè); C. 2個(gè); D. 3個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙上的每個(gè)小方格都是邊長為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣2,﹣1).
(1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B 1C1并寫出點(diǎn)A1的坐標(biāo);
(2)把△ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com