【題目】如圖,方格紙上的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣2,﹣1).

(1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B 1C1并寫出點(diǎn)A1的坐標(biāo);

(2)把△ABC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點(diǎn)A2的坐標(biāo).

【答案】(1)如圖所示見解析,點(diǎn)A 1的坐標(biāo)是(﹣2,2)(2)如圖所示見解析,點(diǎn)A2的坐標(biāo)是(6,0).

【解析】

(1)根據(jù)平移性質(zhì)找出對(duì)應(yīng)點(diǎn)的坐標(biāo),再連接構(gòu)成三角形即可;
(2)根據(jù)旋轉(zhuǎn)性質(zhì)找出對(duì)應(yīng)點(diǎn)的位置,連接即可得到答案.

(1)如圖所示:△A1B 1C1,點(diǎn)A 1的坐標(biāo)是(﹣2,2).

(2)如圖所示:△A2B 2C,點(diǎn)A2的坐標(biāo)是(6,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一下正方形.

1)請(qǐng)你用兩種不同的方法求圖2中陰影部分的面積?

       

2)觀察圖2,寫出三個(gè)代數(shù)式(m+n2,(mn2,4mn之間的等量關(guān)系: 

3)根據(jù)(2)中的等量關(guān)系,解決如下問題:若|a+b7|+|ab6|0,求(ab2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:

(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)

(3)[45-(+)×36]÷5 (4)99×(-36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,當(dāng)x>0時(shí),y隨x的增大而增大的是( )
A.y=﹣2x+1
B.y=﹣x2﹣1
C.y=(x+1)2﹣1
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結(jié)論:①EMFN②CDDN;③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)八年級(jí)的籃球隊(duì)有10名隊(duì)員在“二分球”罰籃投球訓(xùn)練中,這10名員各投籃50次的進(jìn)球情況如下表:

進(jìn)球數(shù)

42

32

26

20

19

18

人數(shù)

1

1

2

1

2

3

針對(duì)這次訓(xùn)練,請(qǐng)解答下列問題:

求這10名隊(duì)員進(jìn)球數(shù)的平均數(shù)、中位數(shù);

求這支球隊(duì)投籃命中率______;

若隊(duì)員小亮“二分球”的投籃命中率為,請(qǐng)你分析一下小亮在這支球隊(duì)中的投籃水平.

投籃命中率進(jìn)球數(shù)投籃次數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,點(diǎn)OAC邊上的一點(diǎn).過點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于F

1)求證:EO=FO;(2)若CE=4,CF=3,你還能得到那些結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=﹣ 的圖象交于A、B兩點(diǎn),與坐標(biāo)軸交于M、N兩點(diǎn).且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2.

(1)求一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案