【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點F.試探究線段BE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】BE=DF

【解析】試題分析:BE與DH的延長線交于G點,由DH∥AC得到∠BDH=45°,則△HBD為等腰直角三角形,于是HB=HD,由∠EBF=22.5°得到DE平分∠BDG,
根據(jù)等腰三角形性質(zhì)得BE=GE,即BE=BG,然后根據(jù)“AAS”證明△BGH≌△DFH,則BG=DF,所以BE=FD.

試題解析:

BE=FD.理由:
BE與DH的延長線交于G點,如圖所示:


∵DH∥AC,
∴∠BDH=∠C=45°,
∴△HBD為等腰直角三角形
∴HB=HD,
而∠EBF=22.5°,
∵∠EDB=∠C=22.5°,
∴DE平分∠BDG,
而DE⊥BG,
∴BE=GE,即BE=BG,
∵∠DFH+∠FDH=∠G+∠FDH=90°,
∴∠DFH=∠G,
∵∠GBH=90°-∠G,∠FDH=90°-∠G,
∴∠GBH=∠FDH
在△BGH和△DFH中,

∴△BGH≌△DFH(AAS),
∴BG=DF,
∴BE= FD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yax5+bx3+cx+14.當(dāng)xn時,y20,則當(dāng)x=﹣n時,y的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=,點E、F分別在BC、CD上,且∠BAE=30°,DAF=15度.

(1)求證:DF+BE=EF;

(2)求∠EFC的度數(shù);

(3)求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2mx+9是完全平方式,則m_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有長為1cm、2cm、3cm4cm的四根木棒,選其中的3根作為三角形的邊,可以圍成的三角形的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次大學(xué)生一年級新生訓(xùn)練射擊比賽中,某小組的成績?nèi)绫?/span>

環(huán)數(shù)

6

7

8

9

人數(shù)

1

5

3

1

(1)該小組射擊數(shù)據(jù)的眾數(shù)是  

(2)該小組的平均成績?yōu)槎嗌?(要寫出計算過程)

(3)若8環(huán)(含8環(huán))以上為優(yōu)秀射手,在1200名新生中有多少人可以評為優(yōu)秀射手?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(11分)如圖,邊長為8的正方形OABC的兩邊在坐標(biāo)軸上,以點C為頂點的拋物線經(jīng)過點A,點P是拋物線上點A、C間的一個動點(含端點),過點P作PFBC于點F. 點D、E的坐標(biāo)分別為(0,6),(-4,0),連接PD,PE,DE.

(1)請直接寫出拋物線的解析式;

(2)小明探究點P的位置發(fā)現(xiàn):當(dāng)點P與點A或點C重合時,PD與PF的差為定值. 進而猜想:對于任意一點P,PD與PF的差為定值. 請你判斷該猜想是否正確,并說明理由;

(3)小明進一步探究得出結(jié)論:若將使PDE的面積為整數(shù)的點P記作好點,則存在多個好點,且使PDE的周長最小的點P也是一個好點.請直接寫出所有好點的個數(shù),并求出PDE的周長最小時好點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,直線CD⊙O相切于點C,AC平分∠DAB

1)求證:AD⊥CD

2)若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)課外實踐活動中,要求測教學(xué)樓的高度AB.小剛在D處用高1.5m的測角儀CD,測得教學(xué)樓頂端A的仰角為30°,然后向教學(xué)樓前進40m到達E,又測得教學(xué)樓頂端A的仰角為60°.求這幢教學(xué)樓的高度AB.

查看答案和解析>>

同步練習(xí)冊答案