已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E為BC的中點.
求證:DE、AC互相垂直平分.

【答案】分析:此題要證明DE、AC互相垂直平分.則連接AE,只需證明四邊形ADCE是菱形.根據(jù)已知條件首先運用兩組對邊分別平行的四邊形是平行四邊形,再根據(jù)一組鄰邊相等的平行四邊形是菱形證明.
解答:證明:連接AE.
∵在直角三角形ABC中,E是BC的中點,
∴AE是Rt△ABC的中線,
∴AE=CE=BE,
∴∠EAC=∠ACE.
∵AD∥BC
∴∠ACE=∠ACD
∴∠EAC=∠ACD
∴AE∥CD
∴四邊形AECD是平行四邊形.
又AE=CE
所以平行四邊形AECD是菱形,
所以DE、AC互相垂直平分.
點評:熟練掌握特殊四邊形的性質(zhì)和判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:在梯形ABCD中,AD∥BC,點E在AB上,點F在DC上,且AD=a,BC=b.
(1)如果點E、F分別為AB、DC的中點,如圖.求證:EF∥BC,且EF=
a+b
2
;
(2)如果
AE
EB
=
DF
EC
=
m
n
,如圖,判斷EF和BC是否平等,并用a、b、m、n的代數(shù)式表示EF.請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點.
(1)如圖①,以EF為對稱軸翻折梯形ABCD,使點B與點D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
(2)如圖②,連接EF并延長與DC的延長線交于點G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關(guān)系寫出你的結(jié)論并證明之.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,點E在AB上,且AE:EB=2:3,過點E作EF∥BC交CD于F,求EF的長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
45
,點E是AB邊上一點,BE=3,點P是BC邊上的一動點,連接EP,作∠EPF,使得∠EPF=∠B,射線PF與AD邊交于點F,與CD的延長線交于點G,設(shè)BP=x,DF=y.
(1)求BC的長;
(2)試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)連接EF,如果△PEF是等腰三角形,試求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,點E、F分別是BC和DC的中點,連接AE、EF和BD,AE和BD相交于點G.
(1)求證:四邊形AECD是平行四邊形;
(2)求證:四邊形EFDG是菱形.

查看答案和解析>>

同步練習冊答案