【題目】如圖,四邊形ABCD是平行四邊形,以點A為圓心、AB的長為半徑畫弧交AD于點F,再分別以點B,F為圓心、大于BF的長為半徑畫弧,兩弧交于點M,作射線AMBC于點E,連接EF.下列結論中不一定成立的是(  )

A. BEEFB. EFCDC. AE平分∠BEFD. ABAE

【答案】D

【解析】

首先證明四邊形ABEF是菱形,利用菱形的性質對各個選項進行判斷即可.

由尺規(guī)作圖可知:AFABAE平分∠BAD,

∴∠BAE∠DAE

四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠DAE∠BEA

∴∠BAE∠BEA,

∴ABBE,

∵AFAB,

∴AFBE

∵AF∥BE,

四邊形ABEF是平行四邊形,

∵AFAB,

四邊形ABEF是菱形,

∴AE平分∠BEF,BEEF,EF∥AB,故選項A、C正確,

∵CD∥AB,

∴EF∥CD,故選項B正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形中,,是對角線上的一點,點的延長線上,且,,連接.

1)證明:

2)判斷的形狀,并說明理由.

3)如圖2,把菱形改為正方形,其他條件不變,直接寫出線段與線段的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的平分線相交于點,過點于點,交于點于點,連接.給出以下四個結論:

①若;

平分;

④若,,則

其中正確的有________(把所有正確結論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系中的兩個圖形K1K2,給出如下定義:點G為圖形K1上任意一點,點HK2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1K2近距離。如圖1,已知ABC,A-1,-8),B9,2),C-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.

1)填空:

①原點O與線段BC近距離 ;

②如圖1,正方形PQMNABC內(nèi),中心O’坐標為(m,0),若正方形PQMNABC的邊界的近距離1,則m的取值范圍為

2)已知拋物線C,且-1≤x≤9,若拋物線CABC近距離1,求a的值;

3)如圖2,已知點D為線段AB上一點,且D5,-2),將ABC繞點A順時針旋轉α0<α≤180),將旋轉中的ABC記為AB’C’,連接DB’,點EDB’的中點,當正方形PQMN中心O’坐標為(5,-6),直接寫出在整個旋轉過程中點E運動形成的圖形與正方形PQMN近距離

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解飲料自動售賣機的銷售情況,對甲、乙兩個城市的飲料自動售賣機進行了抽樣調(diào)查,從兩個城市中所有的飲料自動售賣機中分別隨機抽取16臺,記錄下某一天各自的銷售情況(單位:元)如下:

甲:25,45,44,22,10,2861,1838,45,78,45,58,32,1672

乙:48,52,21,25,3312,42,3941,42,33,44,3318,68,72

整理、描述數(shù)據(jù),對銷售金額進行分組,各組的頻數(shù)如下:

銷售金額

3

5

5

3

2

6

分析數(shù)據(jù),兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)如下表所示:

城市

中位數(shù)

平均數(shù)

眾數(shù)

39.8

45

40

38.9

請根據(jù)以上信息,回答下列問題:

1)填空:________,________________,________

2)兩個城市目前共有飲料自動售賣機4000臺,估計日銷售金額不低于40元的數(shù)量約為多少臺?

3)根據(jù)以上數(shù)據(jù),你認為甲、乙哪個城市的飲料自動售賣機銷售情況較好?請說明理由(一條理由即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)______.

2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的人數(shù)約為多少戶?

4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調(diào)查他們對精準扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團委組織了一次全校2000名學生參加的中國詩詞大會海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績成績x取整數(shù),總分100分作為樣本進行整理,得到下列統(tǒng)計圖表:

抽取的200名學生海選成績分組表

組別

海選成績x

A組

50x<60

B組

60x<70

C組

70x<80

D組

80x<90

E組

90x<100

請根據(jù)所給信息,解答下列問題:

1請把圖1中的條形統(tǒng)計圖補充完整;溫馨提示:請畫在答題卷相對應的圖上

2在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;

3規(guī)定海選成績在90分以上包括90分記為優(yōu)等,請估計該校參加這次海選比賽的2000名學生中成績優(yōu)等的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x+2y軸交于A點,與反比例函數(shù)yx0)的圖象交于點M,過MMHx軸于點H,且tanAHO2

1)求H點的坐標及k的值;

2)點Py軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標;

3)點Na,1)是反比例函數(shù)yx0)圖象上的點,點Qm,0)是x軸上的動點,當△MNQ的面積為3時,請求出所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線交于點O,以OD,CD為鄰邊作平行四邊形DOEC,OEBC于點F,連結BE

1)求證:FBC中點.

2)若OBACOF1,求平行四邊形ABCD的周長.

查看答案和解析>>

同步練習冊答案