【題目】如圖,在△ABC中,點(diǎn)OAC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

【答案】當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)(或OA=OC)時(shí),四邊形AECF是矩形.證明見(jiàn)解析.

【解析】

當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)(或OA=OC)時(shí),四邊形AECF是矩形.由于CE平分∠BCA,那么有∠1=2,而MNBC,利用平行線的性質(zhì)有∠1=3,等量代換有∠2=3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可證四邊形AECF是平行四邊形,又CECF分別是∠BCA及其外角的角平分線,易證∠ECF是90°,從而可證四邊形AECF是矩形.

當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)(或OA=OC)時(shí),四邊形AECF是矩形.

證明:如圖,

CE平分∠BCA,

∴∠1=2

又∵MNBC,

∴∠1=3

∴∠3=2,

EO=CO,

同理,FO=CO,

EO=FO,

又∵OA=OC

∴四邊形AECF是平行四邊形,

CF是∠BCA的外角平分線,

∴∠4=5,

又∵∠1=2,

∴∠1+5=2+4

又∵∠1+5+2+4=180°,

∴∠2+4=90°,

∴平行四邊形AECF是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,已知拋物線yax2bx8x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過(guò)坐標(biāo)原點(diǎn)O,與拋物線的一個(gè)交點(diǎn)為D,與拋物線的對(duì)稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(2,0),(6,-8)

(1)求拋物線的解析式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);

(2)試探究拋物線上是否存在點(diǎn)F,使△FOE≌△FCE.若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線經(jīng)過(guò)點(diǎn)且與直線交于點(diǎn)

(1)求點(diǎn)的坐標(biāo).

(2)求直線的表達(dá)式.

(3)若直線軸、軸分別交于兩點(diǎn),直線軸交于點(diǎn) 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形內(nèi)有一點(diǎn)滿足,.連接、.

1)求證:

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店今年1月份的銷售額是2萬(wàn)元,3月份的銷售額是3.38萬(wàn)元.

(1)求從1月份到3月份,該商店銷售額平均每月的增長(zhǎng)率;

(2)如果該商店4月份銷售額增長(zhǎng)率保持不變,銷售額能否達(dá)到4.5萬(wàn)元,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)質(zhì)點(diǎn)在第一象限及軸、軸上運(yùn)動(dòng), 在第一秒鐘,它從原點(diǎn)運(yùn)動(dòng)到,然后接著按圖中箭頭所示方向運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位,那么第秒時(shí)質(zhì)點(diǎn)所在位置的坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,點(diǎn)O是對(duì)角線DB的中點(diǎn),點(diǎn)PDB所在直線上的一個(gè)動(dòng)點(diǎn),PEBCE,PFDCF

1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測(cè)APEF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;

2)當(dāng)點(diǎn)P在線段DB上(不與點(diǎn)D、OB重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由;

3)當(dāng)點(diǎn)PDB的長(zhǎng)延長(zhǎng)線上時(shí),請(qǐng)將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請(qǐng)寫出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測(cè)量山坡的坡度,即tanα的值.測(cè)量員在山坡P處(不計(jì)此人身高)觀察對(duì)面山頂上的一座鐵塔,測(cè)得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi).

求:

(1)P到OC的距離.

(2)山坡的坡度tanα.

(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿軸做如下移動(dòng),第一次點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第二次將點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn),第三次將點(diǎn)向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn),按照這種移動(dòng)規(guī)律移動(dòng)下去,第次移動(dòng)到點(diǎn),如果點(diǎn)與原點(diǎn)的距離不小于20,那么的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案